
An Empirical Study of SDK Credential Misuse in
iOS Apps

Haohuang Wen
School of Software Engineering

South China University of Technology
Guangzhou, China

onehouwong@gmail.com

Juanru Li
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
Shanghai, China

jarod@sjtu.edu.cn

Yuanyuan Zhang, Dawu Gu
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
Shanghai, China

{yyjess, dwgu}@sjtu.edu.cn

Abstract—During the development of web-based mobile apps,
third-party SDKs (Software Development Kit) are frequently
used to facilitate the integration of certain functionality such
as push notification and mobile payment. Unfortunately, security
issues are often considered as a second-tier problem and app
developers are prone to implement apps with SDK misuses.
Among those typical SDK misuses, the misuse of credentials is
the one that introduces serious security threats. A credential
is a set of unique information (e.g., APP ID, App Token, etc)
allocated to a specific developer to help app authenticate the
identity. However, if not properly used, the credential can be
easily obtained by attackers and leads to not only the leak of
confidential information of mobile developers but also direct
threats to the privacy of end users.

To investigate the SDK credential misuse issue on iOS plat-
form, in this paper we conduct an empirical study against 100
popular iOS apps using two popular mobile SDKs (each SDK
are widely used by at least 40 million users). We implemented
iCredFinder , an automated analysis tool to search credential
misuses in those apps and our experiment demonstrates 68 apps
contain at least one misuse case. Our study demonstrates the
severity of credential misuse on iOS platform: even for those
well-developed SDKs and apps, credentials are not well protected
and can be easily discovered. We expect that our study could help
developers fix those flaws and promote better implementations.

Index Terms—iOS apps, Third-party SDKs, Binary code anal-
ysis, Credential exposure

I. INTRODUCTION

Mobile SDKs are widely adopted by app developers so
that they can easily build a variety of mobile apps for modern
Android and iOS devices (e.g., smart phones and tablets).
Among various kinds of features provided by different SDKs,
one typical feature is to help apps interact with remote APIs
related to back end services and information on servers.
Since one same service is often provided to different apps,
a remote API needs to authenticate the identity of guest apps.
The solution for most mobile SDKs is to use credentials to
distinguish different apps while keeping the same copy of the
code. A credential is often a set of unique information (e.g.,
APP ID, App Token, etc) allocated to a specific developer
when she registers herself to the web service provider. When
the app uses certain web services, it is required to provide
such credentials to express its identity. Otherwise, the request
is blocked.

Since credentials are often the only authentication infor-
mation for many web services, mobile developers need to
properly manage them and should be extra vigilant about
credential security. Unfortunately, the use of mobile SDKs
often weakens this assumption. For one thing, SDK providers
often publish vague instructions on how to use credentials,
leading to mistakenly embedded and protected credentials. For
another, even if a correct guide of credential management
is published, it involves many aspects of protection and is
often very complex. Developers still face various challenges
in implementing a secure protection scheme. As a result, many
flaws related to SDK credentials have been discovered in
mobile apps.

Previous researches [1] proposed to uncover mobile SDK
credential issues mainly focus on Android ecosystem because
Android platform is open-source and the binary code analysis
for bytecode of Android app is well-developed. The code of
Android apps are mostly written in Java and then compiled
into Dalvik bytecode. By leveraging typical program analysis
techniques such as data flow analysis and program slicing,
credentials used in programs can be located at the level of
bytecode. Unfortunately, when the analysis targets turn into
iOS apps, existing approaches are no longer available. First,
iOS apps are compiled into native code executable to guarantee
performance. Compared with bytecode binary executables of
Android apps, native code executables on iOS are much more
difficult to be decompiled and analyzed. The lack of relevant
analysis tools and techniques hinders the automation of iOS
app analysis and code audit is often conducted manually.
Second, iOS apps are mainly developed in Objective-C with
a complicated message dispatching mechanism. This makes it
difficult to conduct an accurate control flow analysis for the
program. Moreover, the executable of iOS app is often very
large because it statically links all used third-party libraries.
As a result, a fine-grained binary code analysis against iOS
app is often time-consuming and error-prone. Finally, even
for the same SDK, a provider often releases two versions for
Android and iOS platform, respectively. The usage of such
SDK on different platforms varies significantly and thus the
experience of how to analyze credential misuse on Android
cannot directly port to iOS platform. Due to those challenges,
to the best of our knowledge, no systematic research on



credential misuse of iOS apps has been conducted.
In this paper, we seek to perform an empirical study of how

iOS app developers misuse SDK credentials. We aim to answer
two problems: 1) is it possible to automatically analyze SDK
credential misuses in iOS apps; and 2) how to evaluate the
found credentials in an app. To answer the first problem, we
propose an automatic credential misuse detection solution for
iOS apps and have implemented iCredFinder , a corresponding
analysis system. To answer the second problem, we combine a
static program analysis and a dynamic data validation to check
the risks related to all discovered credentials. We not only stat-
ically detect credential in apps but also validate its property:
is it a valid token or is it just an expired one. By leveraging
the automated analysis of iCredFinder , we check a dataset
of more than 20,000 iOS apps and choose 100 widely used
apps integrated with two most frequently used mobile SDKs
in Asia. These apps are in good maintenance state and have
accumulated millions of users, which can well represent the
coding practice of developers today. Among them, iCredFinder
found 68 apps contain at least one credential misuse case.
Individually, 62 and 29 apps have embedded valid credentials,
respectively for the two SDKs. Considering that our studied
SDKs are such popular ones (with over 40 million users [2]),
the analysis results reveal that iOS apps are not as secure as
previously imagined. Interestingly, our credential validation
found 34 cases of invalid credentials besides the common
credential exposure cases. Those apps work normally after
we removed contained credentials, which indicates that the
exposed credentials are mistakenly integrated by developers.
Although those credentials are no longer used by the current
version of apps, they are still kept in program code. We also
consider this as a credential misuse because it may reveal some
secret information of the past development.

The contributions of this paper are as follows:
• We conduct an empirical study on SDK credential misuse

problem against iOS apps. To address the issue of iOS app
binary code analysis, we present an automatic detection
solution that is able to find SDK credential misuse in iOS
apps. We also describe the prototype implementation of
iCredFinder , our automated detection system.

• Focusing on two frequently used mobile SDKs, we
checked 100 widely used apps with the help of
iCredFinder . The results show the feasibility of our ap-
proach: we found 68 apps contains at least one credential
misuse case.

II. PROBLEM AND SOLUTION

A. SDK Credential Misuse in iOS Apps

1) Problems: Third-party SDKs are widely used to facili-
tate the development of iOS apps. Although these SDKs are
designed as general components and are used by different apps
to fulfill similar functions, the corresponding web services
often require access control and authentication. Therefore, the
web service often needs extra secret information (we define

this as a SDK credential) to help authenticate the identity
of the host app. A typical example of SDK credential is
demonstrated in Figure 1. To authenticate itself to the web
server, an app needs to provide SDK credential (Line 22 a
constant string) and other necessary information (Line 20-27,
including client id, redirect URL, etc).

Obviously, SDK credentials should be properly managed to
avoid leakage and illegal usage. Since the SDK credential is
used in a mobile device, which is generally considered as an
untrustful environment, the protection of such SDK credential
is essential for app developers. Unfortunately, developers tend
to adopt insecure practice when integrating the SDK creden-
tials. What’s worse, documents and specifications of many
SDK providers are likely to give vague examples of how the
SDK credential should be used, and developers following these
ambiguous instructions tend to misuse the SDK credential,
leading to severe security risks. For instance, they may directly
embed the credential information in the app. In the case in
Figure 1, the SDK credential is hard-coded as a parameter in
the construction of a dictionary and is then embedded into the
argument field of an HTTP request for authentication. Since
the credential is used without any protection, it can be directly
extracted by any attacker using reverse engineering.

2) Attacks: A misused SDK credential may lead to serious
security attacks including unauthorized use of web service,
illegal access to user information and app data, etc. With a
valid SDK credential of a specific mobile app, an attacker
can act as a qualified developer to access certain third-party
services. Take the credential exposure case in Figure 1 as an
example, if the attacker first obtains the SDK credential, he
can conduct a concrete attack demonstrated in Figure 2. In this
attack, the attacker utilizes the obtained credential to construct
an HTTP request. This request can be used to obtain an access
token, which can then be used as the certificate to use third-
party service (Step 1 and 2 in Figure 2). Therefore, the attacker
successfully disguises as a qualified developer and is able to
access any service provided for the SDK provider. With the
illegally acquired identity, the attacker then requests for user
information by invoking the related remote API. If he knows
the uid of a target user, the attacker could construct another
request to query private information of this user information
(As shown in Step 3 and 4 of Figure 2). With the help of
a leaked credential, confidential personal information of a
specified user can be illegally accessed easily.

B. Challenges

Although similar researches on SDK credential of Android
apps have been proposed, the study of such object against iOS
apps is significantly different and non-trivial. An effective and
accurate analysis faces the following three challenges:
• Challenge I: Reverse engineering of iOS apps. The

ecosystem of iOS is proprietary and every iOS app in
AppStore provides neither the source code nor the binary
code. To analyze an iOS app an analyst has to make
additional efforts to decrypt the binary executable. Note
that it is infeasible to obtain decrypted binary executable



secret

Fig. 1: An Example of an Insecurely Embedded SDK Credentials

 ① HTTP POST  /oauth2/accesstoken

{client_id=1023…&client_secret=f45e…&grant_type=...}

 ② {access_token=2.00gZY..., expire_in=...}

Attacker

Authentication 

Server

Web Server

 ③ HTTP GET

/users/show.json?uid=…&access_token=2.00gZY...

 ④ {id=…, name=…, gender=…, district=...}

Fig. 2: How can an attacker harvest user information with a valid SDK credential

of an app without a jailbroken iOS device. In addition,
binary code analysis of iOS app is much more difficult
than that of Android app. Android app analysis is sig-
nificantly facilitated by many well-developed bytecode
decompilation utilities (e.g., JEB). In comparison, less
binary code analysis tools are provided and the decom-
pilation of Objective-C binary code in iOS apps is far
from perfect, leading to the missing of much important
semantics such as function parameter types and variable
names.

• Challenge II: Identifying credentials in iOS apps: To
study the credential misuse problem, the first necessary
step is to identify the used credentials in the program code
of an app. However, the identification of such credentials
in an iOS app can learn little from the identification expe-
riences on Android platform. The use of credential in an
Android app and in an iOS app are significantly different
even if these apps are developed by the same company.
This is determined by different programming language
styles and therefore program analysis techniques available
for Android apps are not applicable when analyzing iOS

apps. Besides, the authentication processes of one SDK
on two platform are often not the same. Hence, new
identification techniques are expected to be proposed.

• Challenge III: Credential validation: An interesting
fact for many apps is that not all statically integrated
credentials in an app can be utilized. Some of them may
be expired beforehand and are left in the app by mistake.
An accurate analysis should validate each credential to
check whether a discovered credential is still a remaining
threat. However, this often requires a dynamic verification
and a solely static program analysis is not feasible to
achieve such a goal.

C. Solution Overview
All these obstacles mentioned above make the existing

analyzing techniques for SDK credential in Android apps fail
to work against that in iOS apps. To address, we propose an
automatic credential misuse detection solution for iOS apps
combining with a static program analysis and a dynamic data
validation. The solution adopts the following strategies:
• Script-based iOS binary code analysis To automate the

binary code analysis of iOS apps, our solution utilizes



Mach-O
Locater

App Samples

Filter

Function

Invocation

Validator

Candidate

Address

Decompile code

WeChat

Weibo

Result

Valid 
Secret

iCredFinder

Assembly

Fig. 3: Workflow of iCredFinder

IDAPython scripts to implement many functions such
as automatically extracting and splitting function names,
acquiring a function’s address by name, etc. With the help
of those analysis scripts, our analysis could deal with
binary executables of commercial iOS apps with tens of
thousands of functions stably and efficiently.

• Heuristic-based credential identification: Since a fine-
grained program analysis against an iOS app is not only
very time-consuming and error-prone since many iOS
apps are very large (more than 100MB), our solution
adopts a heuristic-based credential string searching strat-
egy. This strategy speeds up the analysis and it also
proves the potential candidates can be captured. We then
supplement this identification with a dynamic validation
to prove that the identification result is accurate.

• Dynamic credential validation: We observed that many
web services released by SDK providers can be used
as side channels to check the validity of a potential
credential. Hence our solution can leverage these web
services as remote oracles and construct certain queries
to validate a credential candidate. Although such a remote
oracle not directly responses the result of validity, we can
deduce the needed information by observing its different
replies.

We design and implement iCredFinder , a credential misuse
analysis system to automate our analysis. The workflow of
iCredFinder is displayed in Figure 3. To better illustrate the
entire analysis process of iCredFinder , we make use of a sim-
ple case to present. Considering an iOS app that may contain
misused credentials. iCredFinder first takes the Mach-O exe-
cutable of this app as the initial input (the Mach-O executable
is automatically extracted on a jailbroken iOS device with our
developed shell script). Then, a locater of iCredFinder ana-
lyzes the assembly code and searches for credential candidates
from the string sets of the executable. At the same time, the
addresses of these candidates are also recorded. For instance, if
a string (e.g., b4adae3a2d91021ad33151f2ca707954)
matches the specific feature, it is chosen as a credential can-
didate and its corresponding address (e.g., 0x101781DE0) is
recorded. Next, the candidate is passed to a filter for further
checking. The filter extracts two features of the credential

from the decompiled code of the executable, including the
function name (e.g., -[AppDelegate registerShareSDK]) and
the invocation (e.g., SSDKSetupWeChatByAppId:appSecret).
An invocation is a statement where the credential is taken as
a parameter by a function call. To further filter the credentials
with the features, we match the two features with some
keywords. If at least one of them contains certain keywords
(e.g., SDK, secret), the candidate is chosen as a potential one.
Finally, those collected candidates are sent to the validator
of iCredFinder . The validator adopts a dynamic analysis
approach to validate them by leveraging some remote web
service APIs (e.g., Access Token authentication API). If the
remote API based dynamic query proves that the credential
is a valid one, iCredFinder will report a risky credential use
case.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. App Preprocessing

1) App collection: Before the binary code analysis, we have
collected a large number of candidate iOS apps to build our
sample set. The apps are selected from the top list of the
iOS app market as they are likely to integrate various third-
party SDKs and are frequently updated and maintained by the
developers. Apps cannot be directly used for analysis if they
are downloaded from the official Apple APP Store because
they have been encrypted. To address this issue, we have to
make use of the decryption tool like dumpdecrypted or
Clutch to decrypt the apps.

2) Extraction of Mach-O Executable: Analyzing iOS apps
with IDA will take a Mach-O executable as input. This
executable can be found in the .ipa package of the app. To
simplify the process, we implemented an automated tool for
the extraction of executables. The hierarchical structure of a
directory of an iOS app is displayed in Figure 4.

The .ipa file is essentially a compressed file containing
resources and code of the app. Take Baidu Wallet app as an
example, our target executable is BWA, which shares the same
name with its parent directory BWA.app. As a result, we can
easily write a program to automatically extract the Mach-O
executables from a large number of apps.



.ipa(App)

Payload

…

…

BWA.app

…

Info.plist

BWA

Fig. 4: The Hierarchical Structure of a Directory

B. Harvesting SDK Credentials

To find SDK credentials from a large number of iOS apps,
we conduct the following steps to fulfill the target. Initially,
our system takes the Mach-O executables from the app set as
input. Then, the locater of iCredFinder utilizes some features
to match the candidate secrets, and at the same time locates
their addresses in the assembly code. After that, the filter
of iCredFinder further selects the strings according to their
function name and invocation. Finally, the system validates
all the strings to find out the valid secrets. In the following
paragraphs, we will introduce the detailed steps.

1) Locating Credential Candidates: The analysis of SDK
credential starts from locating the credential candidates.
Through the disassembling and analysis process, we can get
the assembly code as well as the string set of the program. The
SDK credential of the third-party SDKs has distinct features,
it is simply a 32-character hex string. We can easily exclude
most of the useless strings utilizing this feature.

The next thing to do is locating the addresses of the strings.
In this step, the XrefsTo function in IDA Python is used to
check all the references of the given address. Specifically, most
of the strings we found in the string set are cstrings. To locate
the references of the string, the following steps are executed.

(i) Given one cstring and its address, XrefsTo is called to
locate its referenced address.

(ii) Through step (i) we can get the referenced cfstring
address of the original string. Then, XrefsTo is called
again to locate its referenced addresses in the assembly
code.

(iii) From the previous steps, we can get the addresses of the
assembly code where the string is embedded. We map
the given string with these addresses as output.

Note that in some cases a cstring is directly referenced by
the assembly code, so step (ii) is unnecessary. Through these
steps, we can select many candidate secrets and locate their
addresses in the assembly code.

2) Filtering Credential with Features: The collection of
secrets we obtain from the previous step is too large to be
validated because it still contains a large number of useless
strings. In this step, we will filter the secrets based on the

features. According to our observation, the function name
and invocation of the secrets often contain useful semantic
information. For example, secrets often appear at some “set”
and “get” functions, and are frequently called by the SDK ini-
tialize functions like “SSDKSetupWechatByAppId:appsecret”.
Therefore we take the function name and invocation as our
feature to filter the SDK secrets.

After the locating of credentials, we obtain a set of candi-
dates as well as their addresses. we then develop scripts based
on IDAPython and make use of the provided APIs to fulfill
specific functions, such as disassembling and decompilation.
The GetFunctionName and get pesudocode function provided
by IDAPython enable us to get the function name and the
pesudocode based on the given addresses. Note that in the
pesudocode, the invocation statement are often cut into several
lines and thus we need to recover it to be a complement
statement. The decompilation step is implemented by the Hex-
rays decompiler of IDA Pro. The detailed steps to obtain
features are displayed in Algorithm 1.

Algorithm 1 Feature Extraction

Input: secret, address
for each line in pseudocode do

targetLine← line where secret appears;
end for
for line between targetLine and endLine do

if line contains “;” then
endIndex← index of line

end if
end for
for line between targetLine and startLine do

if line contains “objc msgSend′′ then
startIndex← index of line

else
if line contains “;” then

startIndex← index of line - 1
end if

end if
end for

Output: functionName, invocation

We go through all the lines in the pesudocode to locate
the credential. The invocation of functions in Objective-C is
implemented through the delivery of messages, specifically
in the assembly code, when function objc msgSend is called.
This function takes a class, a selector and the function argu-
ments as parameters. As a result, our target focuses on the
objc msgSend functions where the credential is taken as a
parameter.

To extract the invocation of the credential, we starts from the
line of code where credential appears and search forward until
a semicolon is found, which indicates the stop of a statement
and use endIndex to mark the end of an invocation. Then,
we start again from the code line of the credential and search
backward until objc msgSend is detected to locate the start



point which is denoted by startIndex. Finally, we recover
the whole invocation and record it.

After we obtain the function name as well as the invocation,
we filter the credential based on keyword matching. If both of
the features do not match any keywords, the credential will be
abandoned. Otherwise, it is selected as a potential credential.
Our keywords are selected based on our observation, like
“secret”, “login”, etc. During the matching process, we convert
all the strings to lower cases.

It is worth mentioning that since some functions are ob-
fuscated or encrypted during the development, meaningful
information is lost and IDA can not correctly recover their
name. These functions are those with names starting with
“sub ”. However, our approach is resilient to this issue because
we use both of the features for judgment.

C. Credential Validation

The validation of credentials makes use of the official
authentication API which aims at getting the access token.
The authentication process is designed based on the OAuth2
protocol. Developers need to get that token through the HTTP
GET or POST method with some necessary parameters. Our
validation process is implemented by a light-weighted com-
mand line tool curl to simulate the HTTP requests.

During our experiments, we notice an important rule that the
arguments of the request are checked orderly. For example,
when the return message indicates the second argument is
invalid, it also means the first argument has passed the check
on server and thus is valid. Specifically, many web servers of
third-party SDKs check the parameters in the order of appid,
secret and then code or redirct URL. As long as a correct
appid is provided, we can send several authentication requests
to see which credential is valid. Fortunately, the appid often
have distinct features and can be easily found. For example,
the appid of WeChat SDK is a string starts with “wx” and has
a length of 18. From the previous step of locating credentials,
our system also extracts some strings that are likely to be
appids. During validation, we try them one by one until a
valid appid is found. Then we test each of the credentials to
find out the valid credentials.

In real cases, when an invalid credential is tested, the return
message from the server will indicate that the credential is
incorrect. On the contrary, the return message will show that
there is an error on redirect URL or code, meaning that the
credential has passed the validation on the server and is a valid
one.

IV. EVALUATION

In this section, we will present our evaluation of the analysis
of SDK credentials. We introduce our target SDKs and app
samples in IV-A, present the evaluation results on third-
party SDKs in IV-B, and finally discuss the effectiveness and
performance of iCredFinder in IV-C as well as the suggested
best practices in IV-D.

A. Analysis Targets
Prior to this study, we have built a dataset of 20,000 iOS

app executables. We conduct a search on those apps to find
the most frequently used SDKs. We extracted all classes
whose names contain keywords like “SDK”, “API”, and then
determine what SDKs are used. The result reveals that the
top two most frequently integrated SDKs are the WeChat and
Weibo SDKs that are adopted by about 80% of the apps, and
own over 40 million users. Other SDKs such as QQ SDK,
Jingdong SDK, and Alipay SDK are used only by less than
40% of the apps. As a result, our experiments focus on those
two most popular SDKs.

We analyzed 100 most downloaded apps with at least one
SDK integrated into our dataset. Overall, among the 100 app
samples, 94 of them have integrated WeChat SDK, and 78 of
them have integrated Weibo SDK. 72 of them have integrated
both of the SDKs.

B. Experimental Results
During our evaluations, we respectively conducted analysis

on apps that have integrated WeChat and Weibo SDK. The
overall results are presented in Figure 5. To sum up, we have
drawn the following conclusions based on our experiments,
and then we will respectively present results on each of the
SDKs in detail.
• Among the 100 app samples, a majority of them suffer

from the direct exposure or the residual credential issues
where some apps can still work normally when the cre-
dentials are removed. It is revealed that many developers
are unaware of carefully preserving the SDK credentials.

• The exposure of credentials is mainly caused by the
direct request for access token on the client side. As for
the residual problems, various reasons may lead to this
consequence, such as the consideration of compatibility
and the carelessness of the developers.

• The extracted credentials of Weibo SDK are less than
those of WeChat SDK. The major reason is that most of
the developers follow the official guide and implemented
the login function based on the SSO login module.

• The credentials discovered by iCredFinder are all in plain
text. They are directly used without any protection such
as encryption or encoding.

Note that the official guides of those two SDKs have empha-
sized the importance of credential protection and suggested,
and developers are expected to adopt secure practices to
preserve them [3], [4]. To better understand the root causes
of the frequently occurred misuses, in the following, we detail
the analysis for two SDKs, respectively.

1) WeChat SDK Credentials. We analyze the credentials
of WeChat SDK on 94 iOS apps. As shown in Figure 5a, we
extracted one or more valid credentials from 62 apps. Among
them, 52 (55%) apps directly expose the credentials in the
program, 10 (11%) apps suffer from the residual secret issue,
while only 32 (34%) apps securely preserve their credentials.
• Direct exposure. Among the 52 apps which directly

expose their credentials in plain text, iCredFinder extracts



52

(55%)

10

(11%)

32

(34%) Exposure

Residual

Secure

(a) WeChat SDK

5

(6%)

24

(31%)49

(63%)

(b) Weibo SDK

Fig. 5: Evaluation Results of WeChat and Weibo Credentials

Fig. 6: Direct Exposure of Secret

the credentials and performs validation. Most of them
adopt the same insecure coding practice, which requests
for the access token directly on the client side through
the official OAuth2 APIs. With that access token, devel-
opers can implement functions like sending messages and
sharing information. According to our dynamic analysis
on the packages shown in Figure 6, a secret is directly
used as a parameter in the client’s request, and as a
result is likely to be exposed directly in the program.
Some other developers although do not invoke the official
API in the authentication process, still take credentials as
parameters in other network requests, which also leads to
the credentials exposure issue.

• Residual credential issue. There are 10 apps suffer from
the residual credential issue. Unlike the direct exposure

issue, these apps can still work normally even when the
credentials are removed. Through our observation, the
functions taking credentials as parameters are never used
or even have been removed. Nevertheless, most of the
credentials are extracted by iCredFinder and are proved to
be valid ones, while some others are expired. Compared
with the direct exposure problem, it is totally possible
for the developers to address this vulnerability during
the develop process. For one thing, during software
iteration, careless developers may forget to delete useless
credentials after modifying the login module. For another,
the developers may preserve different login modules in
the program for compatibility considerations.

• Secure practice. As for the remaining 32 apps free
from the vulnerabilities, the developers do not request for



access token directly on the client side through the official
OAuth2 API. Instead, them upload the authentication
code to their own servers to let them start the request, as
is shown in Figure 7. When the authentication process is
done, the servers send back the access token to the client
side for the access of third-party service. The sensitive
credentials are well-preserved on the cloud and attackers
are not able to get them through reserve engineering the
mobile apps. This is a secure practice advised by the
official guide.

2) Weibo SDK Credentials. We analyze the credentials
on 78 iOS apps integrated with Weibo SDK. We successfully
extracted one or more credentials from 29 apps, as depicted
in Figure 5b. Among these apps, 5 (6%) apps directly expose
their credentials, 24 (31%) of them suffer from the residual
credential issue, while the other 49 (63%) apps are free from
secret vulnerabilities.

• Direct exposure. Among our samples, only 5 apps di-
rectly expose the credentials in the program, accounting
for only 6% of the apps. The way of exposing credentials
is the same as that in WeChat SDK, i.e., developers
request for access token directly on the client side and
take the credential as a parameter.
The authentication process of Weibo SDK is similar
to WeChat SDK, as both of them adopt the OAuth2
protocol. However, the results of these two SDKs are sig-
nificantly different. The number of exposed credentials is
much less because a majority of developers adopt Single
Sign On (SSO) login module which is also provided by
the Weibo SDK. Our analysis result is shown in Figure 8.
Credentials are not needed in the SSO login process,
so these apps are free from the exposure of credentials.
According to the official guide of Weibo SDK, developers
are suggested to implement the login module based on
SSO. Therefore, thanks to this suggestion, the direct
exposure of credentials are eliminated in most of the apps.

• Residual credential issue. Although most of the de-
velopers have avoided the direct exposure vulnerability
of credentials, there are also 24 apps suffer from the
residual credential issue, which is the major cause of the
misuse of Weibo SDK secrets. A reasonable explanation
is that the OAuth2 authentication module is reserved for
compatibility consideration.
It is also worth mentioning that although there are 4
apps that did not implement the login function, we still
successfully extracted valid Weibo SDK credentials from
them. These outliers are not recorded in our result.
Through validation, the credentials and appids are proved
to be valid and belong to the apps themselves. This may
be as a result of requirement changes and the carelessness
of developers.

• Secure practice. Lastly, a majority of apps do not have
vulnerabilities on their credentials, accounting for 63%
of the total. The developers of these apps properly im-
plemented the login module based on SSO and carefully

follow the official guide. Some others although adopted
their own implementation of the authentication process,
did not directly embed the credentials in the program.
Therefore, these credentials cannot be extracted through
revese engineering.

C. Effectiveness and Performance

We implement iCredFinder mainly based on the state-
of-the-art disassembler IDA Pro and its script subsystem
IDAPython. iCredFinder reuses the disassembly output from
IDA Pro and utilizes IDAPython to manipulate those outputs.
It works stably on all 100 samples without facing any disas-
sembling and decompilation error. There are no false positives
in our evaluation results, since we tested all the credentials
through the official API and can make sure their validness.
False negatives may exist but it is hard to automatically find
out all these credentials. The validation process depends on
the correctly provided appids, while in some cases, developers
may purposely hide them and our system fails to extract
them out. Besides, some developers may adopt encryption or
encoding to protect appid and secret, which thus adds to our
false negatives.

The performance of our analysis is efficient: most of the
analysis tasks can be finished in less than 30 minutes. In
addition, the analyses of different apps can be fulfilled in
parallel. The most time-consuming part of our analysis is
code disassembling and decompilation, whose execution time
depends on the size of an app. While for the validation process,
only about tens of potential credentials are selected for final
validation in each app on average, so the execution time of
the validation process may take just a few seconds when the
network condition is fine and thus can be ignored.

D. Best Practices

From the perspective of developers, we also suggest some
secure practices that help protect SDK credentials from being
extracted through reverse engineering.

• Do not directly embed important credentials in the
client-side, preserve them on the cloud. When request-
ing for authentication, the mobile app should gain the
permission of users and upload the authentication code
to the cloud. The cloud server then requests for the access
token and return it to the client side.

• Delete useless secrets. Developers should always remove
any credentials from the program even if a credential is
expired.

• Use encryption and encoding to protect SDK creden-
tials. Credentials embedded in the client-side program
should be carefully preserved. The key for decryption can
be obtained from the cloud server or can be generated
from a complex algorithm. These can make it very hard
for the attackers to get SDK secrets through reverse
engineering.

• Clean up the memory after authentication. Some
residual secrets and access token may be still in the



Fig. 7: Secure Practice to Preserve Secret

Fig. 8: SSO Login of Weibo SDK

memory and thus are vulnerable to attackers in some
cases.

V. RELATED WORK

Security Analysis on iOS Platform. Though iOS is a
relatively mature and secure mobile OS, there are still plenty
of security concerns on it. Many research focused on the
security issues on iOS mobile apps and adopted static and
dynamic analysis to identify vulnerabilities in these apps. The
uncovered concerning problems include the leakage of privacy
and insecure developer practices. PiOS [5] and PSiOS [6] are
designed to detect the privacy leakage and the latter can also
help address the vulnerable against attacks. More recently,
researches have discovered that the privacy in iOS apps is
also vulnerable to effective OS-level side-channel attacks [7].

Besides the detection of privacy leakage, many efforts have
been made on the identification of insecure developer prac-
tices. For example, iCryptoTracer [8] is proposed to identify
the misuses of cryptography functions. CRIOS [9], a system
aiming at large-scale app analysis, can uncover the library
usages and network security problems.

In addition, there are also other security vulnerabilities on
iOS platform. Obfuscation in iOS apps is studied about their
motivations and pitfalls. The authors also propose several pos-
sible obfuscation approaches to hide the sensitive information
in iOS apps [10]. The sandbox mechanism is systematically
studied, as the researches put forward a novel approach to
analyze the sandbox profiles and also present ways to bypass it
to obtain system level information [11]. Deng et al. focused on
the vetting procedure. They discovered the security issues on
Apple’s apps vetting process and suggested a comprehensive
and secure vetting approach [12].

Vulnerabilities Identification on Mobile Apps. Mobile
apps on other platforms also have security concerns. Besides
iOS, most of the researches are conducted on the Android
platform. Due to the huge differences between these two
operating systems, the problems studied and the techniques
used are also different.

Third-party SDKs are widely used today by a large number
of apps and may have security issues. CredMiner [1] is de-
signed as an effective tool to extract SDK credentials through
static analysis and then validate them. The researchers focused
on storage and mail SDKs and successfully recovered some



developer credentials. Yang et al. concentrates on payment
SDKs and concluded that many developers violate security
rules, which may cause financial loss [13]. ClueFinder [14]
is an NLP-based learning system to identify privacy leakage
from apps to untrusted third-party libraries. It scales well on
a large number of Android apps.

Some studies focused on the network security of web-
based mobile apps. AUTOFORGE [15] is an automatic tool
to forge valid request messages from the client side, and have
uncovered the vulnerabilities of servers due to insufficient
checks. Mendoza et al. implemented a static analysis-based
web API reconnaissance approach to investigate the inconsis-
tencies of validation logic between client and web side [16].
SMARTGEN [17] can automatically expose hidden server
URLs and thus can judge whether these URLs are harmful.

Other vulnerabilities on mobile apps include the violation
of privacy requirements [18], origin message stripping during
the delivery of messages in webviews [19], residual of TLS
keys in the memory [20], and code injection attacks [21]. In
this paper, we differ from the efforts above in investigating
the misuses of SDK secrets of SDKs which have never been
studied before. Our work is conducted on iOS platform and we
designed an effective analysis approach to extract and study
these misuses of secrets.

VI. CONCLUSION

In this paper, we conducted an empirical study on the misuse
of SDK secrets in iOS apps. We implemented iCredFinder to
automatically extract SDK credentials within apps and then
validate them. For evaluation, we selected two widely-used
SDKs, the SDK of WeChat and Weibo, as our targets. Our
experiments on 100 iOS apps succeeded in extracting valid
SDK credentials from 66% (62/94) and 37% (29/78) of them,
respectively. Our evaluation has also uncovered that some
credentials are left unused in the apps. The exposure of SDK
credentials can cause security threats like the leakage of user
information and app data. Given the fact that a large number
of apps suffer from the exposure credential vulnerability, it is
urgent for the careless developers to adopt secure practices to
preserve these exposed SDK credentials.

ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers for

their valuable comments and helpful suggestions. The work
was partially supported by the Key Program of National Nat-
ural Science Foundation of China under Grant No.:U1636217,
the General Program of National Natural Science Foundation
of China under Grant No.:61872237, and the National Key
Research and Development Program of China under Grant
No.: 2016YFB0801200. We especially thank the Ant Financial
Services Group for the support of this research within the
SJTU-AntFinancial joint Institution of FinTech Security.

REFERENCES

[1] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer creden-
tials in android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 2015,
p. 23.

[2] “Wechat and weibo release their financial reports for q3 2017,”
https://chozan.co/2017/11/16/wechat-data-weibo-data-q3-2017/.

[3] “Providing wechat login in your mo-
bile app,” http://open.wechat.com/cgi-
bin/newreadtemplate?t=overseas open/docs/mobile/login/guide.

[4] “Weibo sdk,” http://open.weibo.com/wiki/SDK/en.
[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy

leaks in ios applications.” in NDSS, 2011, pp. 177–183.
[6] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz, “Psios:

bring your own privacy & security to ios devices,” in Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and
communications security. ACM, 2013, pp. 13–24.

[7] X. Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “Os-level side
channels without procfs: Exploring cross-app information leakage on
ios,” in Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS 2018). Internet Society, 2018.

[8] Y. Li, Y. Zhang, J. Li, and D. Gu, “icryptotracer: Dynamic analysis on
misuse of cryptography functions in ios applications,” in International
Conference on Network and System Security. Springer, 2014, pp. 349–
362.

[9] D. Orikogbo, M. Büchler, and M. Egele, “Crios: toward large-scale ios
application analysis,” in Proceedings of the 6th Workshop on Security
and Privacy in Smartphones and Mobile Devices. ACM, 2016, pp.
33–42.

[10] P. Wang, D. Wu, Z. Chen, and T. Wei, “Protecting million-user ios apps
with obfuscation: motivations, pitfalls, and experience,” in Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice. ACM, 2018, pp. 235–244.

[11] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-
R. Sadeghi, “Sandscout: Automatic detection of flaws in ios sandbox
profiles,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 704–716.

[12] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private
api abuse in ios applications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 44–56.

[13] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu,
“Show me the money! finding flawed implementations of third-party in-
app payment in android apps,” in Proceedings of the Annual Network
& Distributed System Security Symposium (NDSS), 2017.

[14] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang, “Finding
clues for your secrets: Semantics-driven, learning-based privacy discov-
ery in mobile apps,” in Proceedings of the 2018 Network and Distributed
System Security Symposium, 2018.

[15] C. Zuo, W. Wang, Z. Lin, and R. Wang, “Automatic forgery of
cryptographically consistent messages to identify security vulnerabilities
in mobile services.” in NDSS, 2016.

[16] A. Mendoza and G. Gu, “Mobile application web api reconnaissance:
Web-to-mobile inconsistencies & vulnerabilities,” in S&P 2018: 39th
IEEE Symposium on Security and Privacy, 2018.

[17] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mobile apps with
selective symbolic execution,” in Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 867–876.

[18] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,
N. Sadeh, S. M. Bellovin, and J. Reidenberg, “Automated analysis of
privacy requirements for mobile apps,” in 24th Network & Distributed
System Security Symposium (NDSS 2017), NDSS, 2017.

[19] G. Yang, J. Huang, G. Gu, and A. Mendoza, “Study and mitigation
of origin stripping vulnerabilities in hybrid-postmessage enabled mobile
applications,” in S&P 2018: 39th IEEE Symposium on Security and
Privacy, 2018.

[20] J. Lee and D. S. Wallach, “Removing secrets from android’s tls,” in
Proceedings 2018 Network and Distributed System Security Symposium,
2018.

[21] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 66–77.


