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Abstract13

Identifying and analyzing code patches is a common practice to not only understand existing bugs14

but also help find and fix similar bugs in new projects. Most patch analysis techniques aim at15

open-source projects, in which the differentials of source code are easily identified, and some extra16

information such as code commit logs could be leveraged to help find and locate patches. The task,17

however, becomes challenging when source code as well as development logs are lacking. A typical18

scenario is to discover patches in an updated Android app, which requires bytecode-level analysis.19

In this paper, we propose an approach to automatically identify and extract patches from updated20

Android apps by comparing the updated versions and their predecessors. Given two Android apps21

(original and updated versions), our approach first identifies identical and modified methods by22

similarity comparison through code features and app structures. Then, it compares these modified23

methods with their original implementations in the original app, and detects whether a patch is24

applied to the modified method by analyzing the difference in internal semantics. We implemented25

PEDroid, a prototype patch extraction tool against Android apps, and evaluated it with a set of26

popular open-source apps and a set of real-world apps from different Android vendors. PEDroid27

identifies 28 of the 36 known patches in the former, and successfully analyzes 568 real-world app28

updates in the latter, among which 94.37% of updates could be completed within 20 minutes.29
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1 Introduction33

Android apps nowadays are published at an unprecedented rate and many developers fre-34

quently update their apps for a variety of reasons such as helping maintain the robustness or35

introducing more competitive features. An update usually leads to multiple modifications36

of the app, some of which are used to improve the functionality or performance, while a sig-37

nificant type of modifications is to fix bugs in apps. This type of modifications, also known38

as patches, reflect how the developers fix the bug. Researchers not only learn the causes39

of bugs but also discover and fix similar bugs [19, 23, 22] in other apps through analyzing40

the information carried by patches. However, it is often unclear for analysts how Android41

app developers repair existing defects for lack of detailed commit logs, especially for security42

participants who do not have access to the source code. Thus, the gap between the updated43

apps and patches hinders the analysis of patches.44
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To the best of our knowledge, few approaches effectively identify patches against Android45

updates (i.e., the original and updated versions of an app). A common and simple way46

to retrieve existing patches is crawling from bug-tracking systems of open-source projects,47

such as GitHub Issue Tracker [16], where the detailed commit messages or bug reports are48

available to determine whether the modified methods contain patches. This approach does49

not work on closed-source apps that have less information to explain the reasons for updates.50

The descriptions about the updates of closed-source apps often only claim what feature has51

been added or some bugs have been repaired, but do not further explain the type, cause,52

and repair information of the bugs. On the other hand, compared with the open-source53

project, the closed-source app has a much larger amount and accounts for the majority of54

Android apps. As for binary-level analysis, SPAIN [45] focuses on patches in C binaries,55

but the huge difference between procedure-oriented and object-oriented program languages56

makes it unable to apply on Android apps.57

Another problem to identify patches at bytecode level is how to locate modified methods58

in updates. Previous works [45, 38] of patch analysis on C binary utilize BinDiff [7] to59

achieve the goal. However, there exist few accurate diffing tools on bytecode of Android apps,60

due to the popularity of code obfuscation (e.g., using ProGuard [30] to protect bytecode).61

Most works only implement coarse-grained similarity comparison [6, 49, 39, 47] cross apps,62

which cannot locate the modified methods between two versions of an app, while other63

works [20, 43, 33] link the original methods with their updated versions by method names64

which cannot resist obfuscation techniques.65

To address the above problems, in this paper, we propose a bytecode-level patch extrac-66

tion approach, named PEDroid, to automatically locate the patches in updates of Android67

apps. The workflow of PEDroid consists of two phases: 1) locating the modified methods68

in two versions of an app, and 2) identifying patches among the modified methods. In phase69

1, given the original and updated versions of an Android app, PEDroid first calculates the70

method-level matching relations based on features extracted from bytecode and the struc-71

ture of the app. The method-level matching relation refers to the two versions of the same72

method, including identical and modified methods. With the matching relations, it filters73

out the identical methods whose features are identical and focuses on the modified methods.74

To identify patches in phase 2, we propose an effective approach to determine the patches75

from two aspects: 1) the call sites of the modified methods, and 2) the difference in internal76

semantics. In particular, PEDroid analyzes the call sites of the modified methods using a77

static taint analysis to check whether the methods use external values (i.e., external inputs78

or results from other methods). Then, it compares the internal semantics of the two versions79

of the modified methods through aligning the same operations of external values within the80

two methods and analyzing the modification related to these operations. Finally, PEDroid81

identifies the patches whose modification is used to fix the processing logic before these82

operations or handle the errors generated by them.83

We evaluated PEDroid on two datasets of Android apps: the first set contains 1384

updates of popular open-source apps, and the second one contains 568 real-world updates.85

We first tested PEDroid on the open-source dataset to evaluate its effectiveness. PEDroid86

achieves a recall of 92% in differential analysis, and successfully identifies 28 of 36 patches87

in patch identification. The results show that our approach effectively locates the modified88

methods and identifies patches. Then, PEDroid ran on the second dataset and successfully89

extracted 98,591 patches. Through a further manual analysis, we confirmed several types of90

patches including security check addition, date usage correcting, error handling, etc. For the91

time cost, 63.91% of the updates were analyzed within 5 minutes, 83.98% were completed92



H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:3

within 10 minutes, and 94.37% were completed within 20 minutes. It shows that PEDroid93

is capable of discovering rich types of patches in real-world apps.94

In summary, our work includes the following contributions:95

We propose a novel approach to extract patches from the neighboring versions of Android96

apps, and implement PEDroid based on the approach, which labels the identical and97

modified methods in given APK files, and then identifies patches among all modified98

methods. To the best of our knowledge, PEDroid is the first work that extracts patches99

from updates of close-sourced Android apps.100

Due to the lack of a standard benchmark to evaluate the accuracy of differential analysis101

and patch identification, we collected a dataset with 13 updates of 6 popular open-source102

apps, which contains 36 patches and 47 non-bugfix updates. The dataset can be used as103

a benchmark for future works to evaluate the performance of patch extraction.104

We also evaluate the applicability of PEDroid on 568 real-world app updates. 98,591105

patches are discovered by PEDroid, including various types (e.g. adding security checks,106

correcting data usage). All updates are successfully analyzed and 94.37% can be com-107

pleted within 20 minutes.108

2 Related Works109

2.1 Diffing in Android110

Diffing is a common technique to compare the difference between two programs. There111

are numerous works to diff two versions of a program at the source code level. Git-diff112

tool [11] defaults input is sequential and cannot handle the changes in text order, for example,113

the different order of methods in a class between compilation. Furthermore, it cannot114

resist the broadly-used renaming obfuscation (e.g., ProGuard[30]) for sensitiveness to all115

characters in the text. GumTree [9] diffs two versions of abstract syntax tree (AST) of a116

single Java source code file and considers the different order. However, it provides only a117

fine-grained diffing between two class files but no method-level matching relations on apps.118

To retrieve matching relations, some works [32, 33, 43] link two versions of a method by119

defined patterns, and involves method names in patterns or similarity comparison. But it120

cannot either handle changes that do not follow these patterns or deal with bytecode with121

little symbolic information. Schäfer et al. [31] propose an approach to extract matching122

relations of methods in framework by their usage (e.g. calling and extension) in apps, which123

builds on the framework or test cases provided by developers. But for all methods in apps,124

a large proportion will be ignored by the approach. Therefore, these existing diffing tools125

cannot meet our requirements to locate the modified methods on bytecode.126

Apart from these diffing tools, there are many bytecode-level approaches to detect simil-127

arity between two Android apps. Many previous works only extract coarse-grained features128

from code to resist obfuscation. For example, only method signatures are extracted as code129

features in several works [6, 49, 39, 47], which makes them unable to discover the modifica-130

tion within a method. To achieve the goal of comparing the similarity at the method level,131

SimiDroid [20] defaults the two methods with the same signatures (i.e., class name, method132

name, parameter and return types) as matched methods. Hence, the approach cannot resist133

renaming obfuscation. Another similarity comparison technique [8] only focusing on single134

methods also obtains inaccurate results. For example, method a and b of class A in the up-135

dated version are matched with method b of class B and method c of class C in the original136

version. Therefore, a more precise approach to matching at the method level is necessary.137

ECOOP 2022
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2.2 Patch Identification138

Most existing works on patch analysis focus on open-source projects. The keyword-based139

approach is the most common way to identify patches, and they collect patches directly from140

open-source project repositories by parsing reports with predefined keywords (e.g., bug, error141

and fault) in their issue tracking systems [26, 24, 37, 21, 17, 40]. Different from open source142

projects that provide formatted and exact code update information, released apps usually143

do not provide detailed descriptions about changed methods. Instead, they just give some144

brief comments about update information1 or even nothing [29]. Hence, it is hard to locate145

relevant code snippets just by these text descriptions. In addition, Xinda Wang et al. [38]146

adopt a matching learning-based technique to identify security patches in open-source C147

projects. They conclude basic, syntactic, and semantic features of changes and train models148

by open-source patch datasets. However, due to the commercial competition between apps149

and the prevention of attackers carrying out attacks, few developers open security issues to150

promote research and analysis. Therefore, the lack of datasets makes it difficult to implement151

effectively on closed-source Android apps.152

As for previous efforts at binary level, Xu et al. [44] generate function signatures for153

known patches to match, which is unlikely to discover unknown patches. SPAIN [45] iden-154

tifies patches based on the heuristic that patches are less likely to introduce new semantics155

than other modifications, and they use the difference of registers, flags, and memory between156

before and after code snippets to represent the semantics. However, since the object-oriented157

program language (e.g., Java) is used, most registers in Android apps point to object ref-158

erences, and operations are usually implemented by API or method invocation instead of159

calculation. Therefore, the semantics of Android bytecode cannot be represented by numer-160

ical differences and such an approach is inapplicable in Android apps. To our best knowledge,161

there is no effective way to identify patches on Android apps.162

3 Overview163

The goal of our work is to understand patches and the corresponding bugs, and automatically164

extract patches from Android app updates. While there are a variety of ways to do so, we seek165

to design an applicable, automated and systematic approach. In this section, we first discuss166

various challenges we need to solve (Section 3.1), then give corresponding solutions against167

these challenges (Section 3.2), and finally describe the overview of our tool (Section 3.3).168

3.1 Challenges169

There will be a number of challenges in order to achieve our goal and these include:170

Challenge 1. How to obtain code features. In order to retrieve matching relations, we171

first calculate code feature similarity. One of the most used code features between two version172

apps is the sequences of instructions, which describes the project updates by comparing173

the text line by line [11]. Another common code feature is method signature [20, 43, 33].174

However, both the two features could not be applied to represent Android bytecode due to175

the compilers, obfuscators and even developer customization. Hence, only code order or the176

method signatures is not feasible in our work. Therefore, we have to first determine how to177

retrieve the code features.178

1 App developers usually describe the app update briefly (e.g., ‘Fixed some bugs’) in the WHAT’S NEW
section of a mobile app homepage.
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Challenge 2. How to retrieve the matching relations. Having the method features,179

the next step is to retrieve the matching relations to locate the methods that are of our180

interest. Since the patches are usually used to update apps, we focus on the modified181

methods. Unfortunately, existing studies could not retrieve matching relations at the method182

level concretely. Some works only detect re-used components (e.g., third-party library) by183

coarse-fine similarity comparison [6, 49, 39, 47] or retrieve specific matched methods by184

patterns and method name [20, 43, 33]. Hence, a more precise approach to matching at the185

method level is necessary.186

Challenge 3. How to identify patches in modified methods. Having obtained the187

modified methods, we still need to further identify the patches. Since the lack of commit logs188

and open-source databases, the existing works [26, 24, 37, 21, 17, 40] cannot be applied to189

Android updates. And other approaches are also inapplicable because of the huge difference190

between procedure-oriented language and object-oriented program languages [45] or the aim191

to discover specific patches against our purpose [44]. Hence, how to identify the patches192

from modified methods is another challenge.193

3.2 Solutions194

As previously mentioned, if we intend to perform patch identification in Android apps, we195

have to face lots of challenges. Fortunately, we have obtained the following insights to196

address the above challenges.197

Solution 1. Extracting features after removing noisy changes. Instead of calculating198

similarity directly on bytecode through code instruction sequences and method signatures,199

we combine multiple strategies to extract stable code features which eliminate the noisy200

changes caused by obfuscation and compilation. Specifically, two steps are involved. First,201

we replace volatile identifiers with specific labels to resist renaming obfuscation. Second, we202

divide bytecode into different code units and sort order-independent units, including basic203

blocks2, fields and methods, to normalize the order.204

Solution 2. Matching guided by positional relationships. We observed that most205

of the code is identical between app updates, especially for the updates with small version206

upgrades. Thus, to pinpoint the matching relations and further locate the modified methods,207

our key insight is to utilize the positional relationships in the program structure to assist208

in matching the modified code. Specifically, we first locate packages containing identical209

code features in different versions as matched packages. And then we utilize the package210

hierarchy 3 of the matched packages and similarity comparison to determine the matching211

relations of other packages. All matched packages are used to further determine the matching212

relations of classes and methods. Finally, those matched methods with different features are213

considered as modified methods.214

Solution 3. Identifying patches by pinpointing buggy operation. Most unexpected215

behaviors of the methods are caused by the incorrect handle of the input, and the corres-216

ponding patches in the updated version are used to fix incorrect usage or handle the errors.217

Especially, the input comes from not only external inputs (e.g., network I/O and user interac-218

tion) but also unexpected results returned from other methods. We call them external values.219

2 a straight-line code sequence with no branches in except to the entry and no branches out except at
the exit

3 a tree of packages and their subpackages. It is like directory structures.

ECOOP 2022
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Our insight to identifying the patch is that a patch usually fixes the processing logic before220

the buggy operation or handles the errors generated by the buggy operation, while the target221

of operation tends to involve external values. Thus, we try to locate the buggy operation to222

identify patches. To achieve it, we first analyze the usage of the modified methods to check223

whether they use the external values, then align the original operations of external values224

within the two methods, and finally determine the patch by specific semantic changes. Such225

changes are indicated by the original operations which have different dependencies between226

two versions or result in extra error handling (i.e., exit or exception capture) of the method,227

and the operation is pinpointed as a buggy operation.228

Example. To better illustrate the insight used in Solution 3, we give the motivating229

examples in Figure 1. The example in Figure 1a fixes the processing logic for the input by230

adding checks. In this case, the parameter path is the input of the method, and it usually231

accepts an external value when invoked, so Line 4 which indirectly depends on path is an232

operation of external values. Since the dependencies of Line 4 are modified, the operation233

is pinpointed as a buggy operation as our insight. Similarly, another example in Figure 1b234

is identified for its handling the exception generated by the deleting operation in the patch235

code, which is different from the original version.236

private void patch1(String path) {
File file = new File(path);
if(file.exists()) {

file.delete();
}else{

Log.e("Tag", "Cannot find target file.");
} 

}

1

2

3 +

4

5 +

6 +

7 +

8

(a) Fix processing logic before a buggy operation.

private void patch2(String path) {
File file = new File(path);
try {

file.delete();
} catch (Exception e){

Log.e("Tag", "Cannot delete target file.");
}

}

1

2

3 +

4

5 +

6 +

7 +

8

(b) Handle errors generated by a buggy operation

Figure 1 Examples of two types of patches. Statements with green background are added
snippets in updated version.

3.3 Framework Overview237

Based on the solutions to the three challenges, we design PEDroid, the first patch extraction238

tool on Android updates. Figure 2 depicts the workflow of PEDroid, which consists of two239

phases:240

1. Differential analysis. PEDroid first establishes the structure of apps and extracts241

features of disassembly code (in Section 4.1). Then, it uses the package as the unit to242

match between the two versions of the app (in Section 4.2), and finally extracts the243

matching relations at the method level (in Section 4.3).244

2. Patch identification. PEDroid extracts the modified methods in the results of differ-245

ential analysis, and checks whether it is affected by external values at each call site (in246

Section 5.1). It then locates the operation of the external values within the method and247

analyzes the modification related to the operations. PEDroid reports the patch if the248

modification is used to fix the processing logic or handle the errors (in Section 5.2).249

4 Differential Analysis250

In this section, we present the design principles of differential analysis, as well as the adopted251

techniques. PEDroid retrieves method-level matching relations between APK updates252

through three steps: structure construction and feature extraction, package-level matching,253

and matching relation extraction.254
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Structure Construction
& Feature Extraction

Package-level 
Matching

Matching Relation 
Extraction

Call Site AnalysisInternal Semantic Comparison

original version

updated version

patch reports

Data Flow Analysis

original version

updated version

Dependency Analysis

Call Site Matching

Class-level 
Matching

Method-level 
Matching

Basic Block Matching

caller

call site info Taint AnalysisPatch 
Identifying

Phase 1: Differential Analysis

Phase 2: Patch Identification

tainted
states

Figure 2 The workflow of PEDroid

4.1 Structure Construction & Feature Extraction255

The first step of differential analysis is to disassemble the Android app and establish the app256

structure, including package hierarchy, classes, and code elements in classes (e.g., methods).257

First, PEDroid builds the relations among packages and classes by the directory structures258

of the disassembled app, where directories correspond to packages and files correspond to259

classes. Then, it parses the file content and extracts details of each class, such as fields and260

methods. Especially, since many nested classes (e.g., inner classes, local classes, anonymous261

classes, and lambda expressions) contain less information, matching them respectively will262

lead to false positives. To eliminate it, PEDroid recovers the nested relations and treats263

them as subunits of the classes they belong to. In detail, PEDroid retrieves it through sys-264

tem annotations from the decompiled class files, i.e., Ldalvik/annotation/MemberClasses,265

Ldalvik/annotation/EnclosingClass, Ldalvik/annotation/EnclosingMethod.266

After app structure construction, PEDroid builds code features from the bottom up267

according to the structure. Specifically, we adopt two strategies to make the feature stable.268

1. Replacing volatile identifiers.269

To remove the volatile parts in code, we use the specific labels to fuzz types and the270

instructions. First, because types contain volatile identifiers, PEDroid only retains the271

primitive types and framework types, and replaces others by label X to remove the noise272

brought by the identifiers, when extracting types involving some code elements such as273

fields. In this way, PEDroid converts them into the fuzzy type. For example, List 1 gives274

an example of fuzz types in a method signature. For instructions, PEDroid replaces275

the different types of the operand with the different labels, as shown in Table 1. Each276

processed instruction is called fuzzy instruction.277

In detail, PEDroid extracts the following feature elements for different code units:278

Basic Block. The feature of a basic block consists of all the fuzzy instructions in the279

Listing 1 Example for fuzzy type. Landroid/content/Context is a framework-type and V (i.e.,
void) is a primitive type. Lcom/text/example is replaced by X.
Original : <init >( Landroid / content / Context ;Lcom/test/ example ;)V
Fuzzy : <init >( Landroid / content / Context ;X)V

ECOOP 2022
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Table 1 Rules for fuzzy instruction

Type Label Original instruction Fuzzy instruction
Register R mov v0, v1 mov R, R
Label L if-eqz :const_0 if-eqz :L
Resouce ID N const v0, 0x7f112222 const R, N
Method/Class
(except Android API) X invoke-virtual p0, Lcom/test/example;->call()V invoke-virtual R, X

basic block.280

Method. The feature of a method includes method access flags, fuzzy types of all281

parameters, and the features of all basic blocks in the method.282

Field. The feature of a field is a string consisting of access flags, fuzzy type, and the283

non-default initialization value. The default initialization values (i.e. null, ‘’, 0, etc.)284

and names of fields are ignored.285

Class. The feature of a class includes the fuzzy types of superclass and interfaces,286

the features of fields, methods, and nested classes.287

2. Normalizing orders.288

The order-independent features such as the features of basic blocks and methods are sor-289

ted to normalize the order. It is because the extracted features without normalizing will290

be different because of the different orders between the two versions. Since these changes291

are caused by compilation rather than developers, we eliminate them. To normalize the292

order of fuzzy instructions with a basic block, PEDroid analyzes the dependencies of re-293

gisters and sorts the order of sequential instructions without dependencies on each other.294

For independent units (including basic blocks, methods, fields, and classes), PEDroid295

directly sorts the features of the same types of the included units. For example, the296

features of basic blocks are sorted and then become a part of the method feature.297

After extracting features and normalizing the order, PEDroid calculates the overall298

feature of each unit by hashing all the orderly features to represent the unit. Hence, the299

overall feature of a unit is calculated based on the overall hash of the included units, rather300

than all the feature elements of each included unit. And PEDroid records the overall301

features and feature elements of all units and the inclusion relations between the units.302

4.2 Package-level Matching303

With the app structure and the features of code elements, PEDroid calculates the matching304

relations between packages based on the package hierarchy, which is the sub-graph of the app305

structure. Specifically, PEDroid extracts identical classes, which are the two classes with306

identical features. And then it locates identical packages having at least one identical class.307

Among the rest packages, PEDroid utilizes their positional relations with the identical308

packages on the two package hierarchy to search for matching candidates, and treats the309

packages with the greatest similarity as similar packages. In summary, it includes two steps:310

identical package matching and similar package matching.311

Identical Package Matching312

PEDroid builds an identical package collection PKGiden, which stores the identical package313

pairs. To achieve it, PEDroid first finds out the identical classes. Especially, only when the314

overall feature of the class in the updated version is unique and the same as the unique feature315

in the original version, the two version classes are regarded as identical classes. Packages316
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with one or multiple identical classes are considered identical, and the two packages are317

added to PKGiden as a pair. According to these rules, PEDroid obtains the matching318

pair collection PKGiden of the identical packages, which maps an updated package to all319

the original packages considered to be identical. That means a package may have multiple320

identical classes to different packages of another version.321

Similar Package Matching322

Based on the identical package collection PKGiden and package hierarchy, PEDroid matches323

similar packages by different positional relationships. Algorithm 1 represents our approach324

to determine similar packages from candidates. In detail, PEDroid first discovers the can-325

didates by the positions of matched packages (which are initially identical packages) on326

package hierarchy and then selects the packages with the greatest similarity among candid-327

ates as similar packages.328

Algorithm 1 Searching similar packages in all candidates
Input: Candidates set Candidatesim

Output: Similar packages P KGsimi

P KGsimi ← ∅
map1 : mapping new version packages to all candidates packages in old version
map2 : mapping old version packages to all candidates packages in new version
for ⟨p1, p2⟩ in Candidatesim do

map1[p1].add(p2)
map2[p2].add(p1)

end
for ⟨p1, candidates1⟩ in map1 do

p2 ← get most similar package in candidates1 of p1
candidates2 ← map2[p2]
p

′

1 ← get most similar package in candidates2 of p2

if p1 == p
′

1 then
P KGsimi.add(⟨p1, p2⟩)

end
end
return P KGsimi

Similarity Calculation. PEDroid quantifies similarity based on the similarity between329

features. Since the feature is extracted from the bottom up, the similarity between the upper330

units involves their bottom units. That means, before calculating the similarity of the units,331

the matching relations between their included units should be obtained. For example, the332

similarity of classes is calculated based on the matching relations between the methods in333

the target classes. The matched units are called peer units. Besides the included units, other334

feature elements of the same type in a unit are also regarded as peer units, such as the access335

flags of methods. Furthermore, to reflect the amount of information, we introduce the length336

of feature in similarity calculation, which means the number of basic elements contained in337

the feature. For example, the length of features of a basic block is the number of extracted338

instructions. Specifically, we define three types of similarity at different levels as follows:339

Method-level Similarity. The proportion of the sum of the lengths of identical features to340

the total length of features of the method.341

Class-level Similarity. The weighted average of the similarity between peer units where the342

weight is the length of features. If the class has nested classes, the similarity is added343

with the sum of the similarities of all nested classes.344

Package-level Similarity. The sum of the similarity of peer units between two packages.345

ECOOP 2022
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To support similarity calculation of packages, we propose the matching algorithm to346

retrieve the matching relations between classes in two packages and methods in two classes347

in Algorithm 2. PEDroid calculates the similarity between each two of the target units348

(i.e., classes or methods). It sorts the similarity scores from high to low and selects the349

matching pairs in turn. If the similarity of a pair is greater than THRESHOLD, the two350

units in the pair are considered similar. Considering the trade-off between false positives351

and false negatives, we set THRESHOLD as 0.15.352

Algorithm 2 Matching relation construction at the class/method level
Input: Members set S1, S2 in matching targets T1, T2, similarity threshold THRESHOLD
Output: Matching relationship set R
L← ∅
for m1 in S1 do

for m2 in S2 do
s← similarity between m1 and m2
L.put(s, ⟨m1, m2⟩)

end
end
sort L by similarity from highest to lowest
R← ∅
for s, ⟨m1, m2⟩ in L do

if (s > THRESHOLD) and (R have no pair containing m1 or m2) then
R.add(⟨m1, m2⟩)

end
end
return R

Positional Relationships. A package acts as the namespace, and it usually includes353

a collection of classes or sub-packages with similar functions. Therefore, the positional354

relationships between nodes in the package hierarchy indicate the relations on function.355

Moreover, if a subtree, consisting of a package and all its sub-packages, represents a third-356

party library, which is relatively independent, changes in structure generally happen within357

the library. Hence, two nodes with identical child nodes (or descendants) may be similar or358

belong to the same library.359

PEDroid first retrieves candidates by three close positional relationships, i.e., the pack-360

ages that have identical parent, child, or sibling packages. The nodes, which have closer361

relations to others, are first considered to be potentially similar. PEDroid builds the can-362

didate collection Candidatesim according to the three positional relationships to identical363

packages in PKGiden, and then selects the most similar pairs to build the matching collec-364

tion PKGsimi.365

For the nodes which cannot be matched through the close positional relationships, PEDroid366

obtains the similar collection PKG
′

simi through the more general positional relationships367

in the package hierarchy, i.e., the ancestors and descendants. Algorithm 3 gives the ap-368

proach to find the ancestors with matched descendants and then locate candidates by the369

distance to the matched ancestors. In detail, the process of matching has a loop to search for370

candidates and find the most similar ones. Before the loop starts, PEDroid retrieves a set371

PKGancient by the matched packages. It collects the node pairs having at least one matched372

pair in the descendant nodes. For the ith subround, PEDroid considers the nodes, whose373

ancestor nodes with distance i are a pair in PKGancient, to be candidates and adds them374

into Candidate
′

sim. And then it obtains similar packages from Candidate
′

sim by Algorithm 1,375

and adds the pairs into PKG
′

simi. Until all similar packages are found or the number of376

rounds exceeds the depth of the package hierarchy, the matching process is stopped.377
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Algorithm 3 Matching by the ancestors and descendants
Input: Unmatched packages in new and old version P1,P2, two versions of hierarchy H1, H2,

matched packages set P KGmatched

Output: Similar packages P KG
′

simi

P KGancient ← ∅
for ⟨p1, p2⟩ in P KGmatched do

for k = 0 .. min(level(H1, p1), level(H2, p2)) do
a1 ← kth ancestor of p1 in H1

a2 ← kth ancestor of p2 in H2
P KGancient.add(⟨a1, a2⟩)

end
end
R1, R2 ← P1, P2

P KG
′

simi ← ∅
for i = 0 .. min(height(H1), height(H2)) do

Candidate
′

sim ← ∅
for p1 in R1 do

for p2 in R2 do
if i > min(level(H1, p1), level(H2, p2)) then

continue
end
a1 ← ith ancestor of p1 in H1

a2 ← ith ancestor of p2 in H2
if ⟨a1, a2⟩ in P KGancient then

Candidate
′

sim.add( ⟨p1, p2⟩)
end

end
end
matched← get matched packages from candidate collection Candidate

′

sim

P KG
′

simi.union(matched)
for ⟨p1, p2⟩ in matched do

R1.remove(p1)
R2.remove(p2)

end
end
return P KG

′

simi

4.3 Matching Relation Extraction378

With the results of package matching, PEDroid obtains matching relations (i.e. Identical379

and Similar) at class and method level in matched packages. The identical classes are380

obtained by the identical overall features of classes, while the similar classes in identical381

packages collected in PKGiden are matched by similarity as Algorithm 2. For the similar382

packages in PKGsimi and PKG
′

simi, the matching relations between classes have been383

calculated and cached during the matching process, and can be extracted directly.384

Except for the matching relations, the unmatched classes/methods in the updated version385

of the app are classified as New, and those in the original version are classified as Deleted.386

Therefore, by calculating the similarity, the classes and their methods in the two packages387

are finally divided into four categories: Identical, Similar, New and Deleted.388

5 Patch Identification389

In this section, we introduce how PEDroid distinguishes whether a modified method con-390

tains a patch after locating the modified methods. Since the insight is that a patch usually391

fixes the processing logic before the buggy operation or handles the errors generated by the392
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buggy operation, while the target of operation tends to involve external values, PEDroid393

analyzes the two version methods from two aspects: 1) the call sites of the methods and394

2) the difference of internal semantics. Through the analysis of the call sites, PEDroid395

could check whether the method uses external values. Through internal semantic analysis,396

it locates the variables carrying external values and the original operations of these variables397

in the modified methods to discover potential buggy operations, and then identifies the two398

types of modification.399

5.1 Call Site Analysis400

In order to find the modified methods using external values, PEDroid employs static intra-401

procedural taint analysis to analyze the call sites of all modified methods. Compared with402

inter-procedural analysis which is more accurate but brings unacceptable overhead, the403

intra-procedural analysis is more suitable for us to analyze the real-world apps. And to404

alleviate the limitation that intra-procedural analysis cannot find external values explicitly405

or implicitly passed between functions, PEDroid takes the parameters and member variable406

as taint sources.407

Since static taint analysis has been studied well, we omit its technical details for brevity408

here. In the following, we only describe the strategies how PEDroid selects sources and409

sinks and then propagates the taint.410

Taint Sources. PEDroid marks the variables that may carry external values as taint411

sources, including parameters, member variables, and return values of method invoca-412

tion statements. As a part of external values, return values of other methods are marked413

as sources, and external input could also be obtained by return values of Android API.414

Especially, the return value of the constructor method (i.e., <init>, <clinit>) without415

other sources is excluded for its purpose is initialization. Both the parameters and mem-416

ber variables could introduce external values from other methods, so PEDroid treats417

them as sources to avoid missing reports.418

Taint Sinks. The modified methods are sinks of our taint analysis to find out whether the419

modified methods use external values at the call sites. PEDroid directly retrieves the420

methods classified as Similar in Section 4.3 and marks them as sinks.421

Taint propagation. PEDroid mainly focuses on two types of statements, i.e., assignment422

and invocation, to propagate the taint.423

Assignment. If the right-hand side expression is tainted, the left-hand side value is424

also tainted.425

Invocation. Due to the limitation of intra-procedural analysis, it is unknown how426

the taint values propagate in the callee. PEDroid specifies that if a parameter is427

tainted, the return value and instance (if any) are also tainted, but PEDroid does428

not consider the possibility of taint propagation between method parameters to reduce429

false positives.430

void CallerA(int arg){
int a = this.A;
int b = 0;
sink(arg, a, b);

}

void CallerB(){
int a = 10, b = 1;
int c = d();
sink(a, b, c);

}

Figure 3 Example for result extraction in call site analysis.

After taint propagation, PEDroid extracts the tainted states of the modified methods.431

For the tainted call sites, PEDroid records the indexes of all the tainted parameters and432
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the caller. And the taint states of different call sites of a method will not be merged to433

reduce false positives. Figure 3 gives an example where method sink has two call sites in434

method CallerA and CallerB. In this case, PEDroid separately records that the first and435

second parameters of sink are tainted in CallerA and the third parameter is tainted in436

CallerB, rather than regards that all the parameters are tainted. This is because sink may437

only trigger a bug at the call site of CallerA and the invocation by CallerB has nothing to438

do with the bug. So, the operations of the third parameter in method sink can be ignored.439

On the other hand, CallerB may be a new method or the call site in CallerB may be newly440

introduced for feature enhancement. The operations of the third parameter within sink441

method are modified so that it can adapt to new features. Therefore, merging them will442

bring false positives.443

In addition, Android callback techniques would bring false negatives to the approach,444

because callback methods are invoked in Android frameworks. They are driven by Android445

lifecycle events (e.g., onCreate), user interactions (e.g., onClick) and so on. To alleviate this446

problem, we collect the names of all Android callback methods in advance, and PEDroid447

treats the overriding callback methods as having identical call sites whose parameters are448

used to pass external values.449

5.2 Internal Semantic Comparison450

Based on the analysis of the call sites of modified methods, PEDroid identifies the patches451

through internal semantic comparison. Specifically, our aim is to find out whether the452

modification is used for correcting the processing logic or handling the errors. The former453

is indicated by the different dependencies of original operations, so PEDroid extracts the454

control and data dependencies and then compares the dependencies between two versions.455

As for the latter, PEDroid takes two cases into consideration. The first case is adding an456

exception capture operation to catch the exception generated by original operations. The457

second is adding checks of the return value of the original operation, while a branch of the458

check is a aborting block which aborts execution of the method when an error occurs. To459

identify the case, PEDroid searches for the aborting blocks by exits of methods:460

1. a basic block ends with exception throwing;461

2. a basic block contains only a return statement or logging and return where logging is462

often used to record the errors.463

We implement it on the top of Soot [34]. And for illustration purpose, we take the patch464

in Figure 1a as example and give their Control flow graphs (CFG) in Figure 4. In detail,465

PEDroid compares the internal semantics through the following steps:466

Step 1. Call site matching. With the modified methods and their usage, PEDroid matches467

the call sites between two versions to obtain all similar usage of the method in the app.468

Specifically, it matches the call sites whose callers have been identified as Identical or469

Similar in Section 4.3. According to the matching results, PEDroid analyzes each pair470

of the call sites respectively in the following steps. It is because the matched call sites471

represent the identical usage of the methods and different usage should be separately472

analyzed as discussed in Section 5.1.473

Step 2. Data flow analysis. To find usage of the tainted parameters within the method,474

PEDroid performs forward data flow analysis in the modified method to locate all475

statements which use the variables directly or indirectly dependent on these parameters.476

It retrieves data flows through assignment and invocation statements, where the rules are477
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virtualinvoke $r2.<java.io.File: 
boolean delete()>();
return;

staticinvoke <android.util.Log: int 
e(java.lang.String,java.lang.String)>(…);
return;

$r0 := @this: com.Example;

$r1 := @parameter0: java.lang.String;

$r2 = new java.io.File;
specialinvoke $r2.<java.io.File: void <init>(java.lang.String)>($r1); [$r1->$r2]
$z0 = virtualinvoke $r2.<java.io.File: boolean exists()>(); [$r2->$z0]
if $z0 == 0 goto

1

2

N1

N2 N3

(a) Fixed version of example code.

$r0 := @this: com.Example;

$r1 := @parameter0: java.lang.String;

$r2 = new java.io.File;

specialinvoke $r2.<java.io.File: void <init>(java.lang.String)>($r1);  [$r1->$r2]

virtualinvoke $r2.<java.io.File: boolean delete()>();

return;

O1
1

2

(b) Buggy version of example code.

Figure 4 CFGs of the two versions of methods in Figure 1a. The example code is displayed in Soot
intermediate representation. Registers in pink font indicate they depend on affected parameters,
and the data flows are labeled after the statement as well. The bold statements are candidates of
buggy operations.

similar to propagation discussed in Section 5.1. We call the located statements affected478

statements. In Figure 4, the statements with pink registers are affected statements.479

Step 3. Basic block matching. To improve the accuracy of dependency comparison, PEDroid480

aligns the basic blocks between the two versions of methods, instead of matching at the481

statement level. Alignment is based on the statements in basic blocks and the structure482

of CFG whose nodes are basic blocks. Due to the complexity of solving the graph match-483

ing problem, we adopt a simplified strategy that utilizes the breadth-first traversal orders484

of CFG to flatten the graph and aligns the blocks by LCS (longest common subsequence).485

The identical basic blocks are the blocks with identical representative statements includ-486

ing return, if, exception, method invocation, and array operations and constant values487

in statements.488

After alignment, the blocks between two matched blocks (or entry/exit) are also regarded489

as matched blocks that may have many-to-many matching relations. In the example,490

there are three-to-one matching relationships between basic blocks which map from the491

basic blocks N1, N2 and N3 to O1.492

And with the matching relations between basic blocks, PEDroid collects the aborting493

blocks which have no identical basic block. Therefore, the basic block N3 is located when494

analyzing the example.495

Step 4. Dependency analysis. With the matching relations between basic blocks, PEDroid496

obtains the matched statements and then filters the subset marked in Step 2. The subset497

of matched statements are the original operations of the external values in the methods498

and includes the buggy operations we focus on. We bold these statements in the ex-499

amples in Figure 4. To pinpoint which operations among the candidates (i.e., matched500

statements in the subset) are modified satisfying our insight, PEDroid analyzes the501

dependency of two types of statements.502
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1. To distinguish the changes to fix processing logic, PEDroid extracts control and503

data dependencies of each candidate in original and updated versions, which will be504

compared in the next step.505

2. To distinguish the changes to handle errors, PEDroid analyzes the data dependency506

of if statements. Specifically, if the predecessors of the aborting blocks located in Step507

3 end with a if statement, PEDroid searches for sources of registers compared in the508

statement, where the sources are the assignment statements defining these registers.509

If a candidate is found, PEDroid will record it as having an error value check. In510

the example, although N3 is an aborting block, the register compared is irrelevant to511

any candidates, so it is filtered out in this step.512

Step 5. Patch identifying. Finally, PEDroid determines patches by checking two types of513

specific changes:514

1. To check the changes for fixing the processing logic, PEDroid compares the depend-515

encies between the original and updated methods. In particular, it compares the516

control and data dependencies of each candidate. A patch is reported if a difference517

in dependencies is found.518

In Figure 4, the candidate ¬ has the identical control and data dependencies between519

the original and updated versions, so it is not a buggy operation. But the dependencies520

of the candidate  are modified where the file existence check is added in the updated521

version. Hence, PEDroid identifies it.522

2. To check the changes for handling errors, PEDroid respectively identifies two cases.523

First, if an exception capture is added and its predecessors contain a candidate, it is524

identified as a patch. And the second case is identified by the candidate that has an525

error value check in the updated version but no such check in the original version.526

6 Evaluation527

6.1 Dataset528

In the experiment, we collected two datasets, the manually selected open-source Android529

projects from GitHub [12] named dBench, and APK files of pre-installed apps extracted530

from Android phones. The former is used to measure the accuracy and effectiveness of531

PEDroid, and the latter is used to evaluate the applicability to real-world apps and check532

whether PEDroid can discover patches on real-world apps.533

dBench: we selected apps and their updates by manually reading the commit message of534

the projects on GitHub, and then downloaded the release version APK files for testing,535

to achieve the effect on the real-world apps as far as possible. The policy for selecting536

updates is as follows:537

1. For modification of each method in an update, detailed commits can be found so that538

we can determine whether a commit is used to fix a bug by the title, description, or539

related issue;540

2. This version update has at least one patch and one non-bugfix update (e.g., code541

refactoring and feature enhancement). Especially, PEDroid focuses on the patches542

which lead to the method change and filters out other commits (e.g., configure files).543

Finally, dBench includes 6 projects with a total of 13 updates, as shown in Table 7 and544

Table 8. In the tables, we also list the filtered commit IDs and whether they are marked545

as patches. It includes a total of 83 commits, of which 36 are marked as patches. Table 2546
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shows the size of APK files in each update, where the size is represented by the number547

of classes and methods in updated versions.548

Table 2 The number of classes and methods of applications in dBench. ProjectName_un is
corresponding to each update in Table 7 and 8 for short.

Update Classes Methods
markor_u1 4,339 31,561
markor_u2 4,443 32,202
gpstest_u1 2,103 15,510
gpstest_u2 3,165 22,527
gpstest_u3 3,165 22,527
MaterialFiles_u1 5,822 29,637
MaterialFiles_u2 5,824 29,632
MaterialFiles_u3 7,624 42,316
andotp_u1 3,011 22,424
andotp_u2 3,996 29,155
gnucash_u1 6,688 47,398
gnucash_u2 6,690 47,414
anki_u1 14,332 135,646

Pre-installed apps: we collected pre-installed apps as a real-world app dataset. Because of549

the privilege permissions of pre-installed apps, the defect will lead to more serious prob-550

lems. Moreover, these apps cover various categories (except games), so comprehensive551

types of apps can be analyzed. In detail, we collected mobile phones from six mainstream552

Android mobile device manufacturers, including Huawei, Motorola, Oneplus, Samsung,553

Vivo, and Xiaomi. In the first step, we regularly monitored app updates, and used the554

tool ADB [1] to pull the APK files from phones to the computer. For the preliminarily555

collected APK files, we removed duplicate files with the same hash value. Then, we used556

the tool keytool [18] to analyze the certificates of APK files, and then filtered out apps557

that are not signed by the vendor. Finally, the number of unique apps in our real-world558

dataset is 187. We regard the different APK files of an app with the minimum version559

gap as an update, and a total of 568 app updates are collected. The detailed amount560

and distribution of updated versions are shown in Table 3.
Table 3 The collected updates of pre-installed applications.

Huawei Motorola Oneplus Samsung Vivo Xiaomi Total
App 42 5 25 8 28 79 187

Update 105 6 28 10 75 342 568
Major upgrade 30 1 9 0 3 34 77
Minor upgrade 16 3 6 0 19 127 171
Small update 59 2 13 10 53 181 320

561

6.2 Setup562

Differential analysis is implemented in Python, and we disassemble the Dex bytecode of563

APK files by the tool baksmali. For patch identification, our taint analysis is based on the564

taint engine provided by Find Security Bugs [10], and the analysis of internal semantics is565

implemented in Java on top of Soot [34], a framework for analyzing and transforming Java566

and Android apps. In addition, PEDroid would not identify whether modified methods in567

the standard libraries (e.g., Android Support Library) are patches because the changes in568

these methods are to provide compatibility between different versions.569

The experiments were performed on a server running Ubuntu 18.04 x64 with two Intel570

Xeon Gold 5122 Processors (each has eight logical cores at 3.60 GHz) and 128GB RAM.571
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6.3 Effectiveness572

To measure the effectiveness of differential analysis and patch identification, we conducted573

a controlled experiment on dBench.574

6.3.1 Results575

In total, PEDroid found 429 modified methods which are classified as Similar after differ-576

ential analysis and then reported 60 out of them are patches. Based on the related commits577

and manual analysis, the accuracy of the results will be further evaluated in Section 6.3.3578

and 6.3.4. In this section, we will discuss the intermediate results and effectiveness of each579

phase of PEDroid.580

Matching relations. 2,706 identical packages are found after identical package matching.581

During similar package matching, 36 packages were matched using parent-child and sibling-582

sibling relationships and one package was matched by ancestors and descendants. Although583

only one package was matched by ancestors and descendants on dBench, its parent package584

has no class to determine the similarity resulting in having no matched package, while it585

has no child or sibling package, so the close relationships cannot indicate the candidates for586

matching. Hence, matching based on ancestors and descendants is necessary for our design.587

In these small updates, most packages can be matched by the identical classes, and both588

two approaches based on positional relationships work in the process.589

By class-level matching, 36,811 classes were classified as Identical, 251 classes were clas-590

sified as Similar, 69 classes were classified as New, and 23 classes are classified as Deleted.591

Among Similar classes used to locate the modified methods, we found one pair of classes592

had the wrong matching relation. Between the two classes in the pair, a class is derived from593

another class in the updated version, which leads to a similar implementation and confuses594

matching. Unfortunately, it finally caused wrong matching relations between methods.595

Modified method usage. In the call site analysis, we found a total of 1,071 call sites of596

Similar methods in updated versions, but only 893 call sites in original versions. It indicates597

that new call sites are introduced in the updated version of the app. Our consideration of598

filtering call sites in Section 5.2 is necessary.599

PEDroid discovered 251 unique methods using external values by taint analysis, and600

54 additional methods through the name of callback methods. We conducted a manual601

analysis on the filtered methods to identify false negatives. We found that most of them602

were filtered out because they used no external values or had no call sites (e.g., changes603

in the updated third-party libraries). As for false negatives, call sites of 12 methods were604

missing in the taint analysis. Among them, four were overriding methods because PEDroid605

failed to find the correct callee at the call site, and the rest came from the lack of accuracy in606

the implementation of taint analysis. On the other hand, due to the limitations of callback607

method identification, 22 callback methods could not be found, of which three methods are608

customized methods by developers, and 19 methods are unrecognized due to obfuscation.609

In short, due to the limitations of implementation, the usage of some modified methods can610

not be found in analysis, most of which are caused by callbacks.611

6.3.2 Performance612

The time cost of each update is shown in Figure 5. PEDroid completed every analysis613

in 6 minutes, where taking up to 336 seconds to analyze the update anki_u1. According614

to the data in Table 2 and Figure 5, it is obvious that the time cost is greatly affected615

by the size of APK files. Most of the time was spent on analyzing the call sites, up to616
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80.7% (MaterialFiles_u1). It is because that PEDroid checks every method in the app617

for searching the usage of the modified methods.618
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Figure 5 Time cost of each step on dBench.

6.3.3 Differential analysis619

To evaluate the accuracy of differential analysis, we use the commits as the ground truth620

to check whether the modified methods are found by PEDroid. Especially, among the621

commits, we focus on the modifications that cause semantic changes. It means that some622

modifications such as renaming identifiers and merging two statements into one in commits623

will be ignored. In total, 238 methods have been modified by developers in dBench.624

6.3.3.1 Accuracy625

Table 4 reports the detailed results of our accuracy evaluation on dBench, PEDroid classi-626

fied 429 methods into Similar category, where 234 methods belong to the project and 195627

methods change with the upgrade of third-party libraries. Among the 238 modified methods,628

PEDroid successfully identified 221 of them, where 17 modified methods were missing. On629

the other hand, PEDroid mistakenly classified 13 pairs of methods as Similar.630

It is obvious that the wrong matching relations will lead to both false negatives and631

false positives. For example, if two pairs (A, A
′) and (B, B

′) are modified methods, the632

wrong relation (A, B
′) brings a false positive and two false negatives to the results. Before633

illustrating the false negatives and the false positives, we conducted a manual analysis of the634

incorrect results and summarized the causes for wrong matching relations between methods.635

Method inlining or extraction. Method inlining would merge multiple methods into one636

method, and extraction splits a method into multiple methods. In this case, PEDroid637

matches one of the methods with the highest similarity, which may wrongly match the638

new (or deleted) method and the long method of the other version.639

Similar implementation. The implementation of some methods is very similar for their sim-640

ilar functions. It leads to similar extracted features, which confuse similarity calculation.641

When matching methods with similar implementation, the results may be crossed.642

Large changes. The proportion of method body changes is large, especially for the methods643

with few features (e.g., only one or two basic blocks in the method body), the little644



H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:19

change of code can lead to large changes in the extracted features. It leads to the645

correct matching relation can not be calculated, and the modified method is matched646

with irrelevant methods with partially the same features.647

In the reported Similar methods, 13 pairs have wrong matching relations. Among them,648

five pairs are caused by the first reason, six pairs are caused by the second reason, and two649

are caused by the third reason.650

The false negative refers to missing reports of modified methods. Among 17 false negat-651

ives, 13 of them are caused by wrong matching relations, which have been discussed before.652

Two false negatives were classified as New and Deleted by mistake due to large changes.653

The rest two were classified as Identical because the extracted features could not reflect the654

changes.655

As for false positives, it indicates New/Deleted/Identical methods which are incorrectly656

classified as Similar methods, and Similar pairs with wrong matching relations. Especially,657

numbers in parentheses in Table 4 are the number of pairs with wrong matching relations.658

It shows that all the false positives came from the wrong matching relations.659

6.3.3.2 Obfuscation-resistant660

To address renaming obfuscation techniques is very important for our design. For example,661

the method example() in class Example was renamed with A.a() in the original version but662

B.b() in the updated version, which are different. Even if some of APK files in dBench do663

not enable the obfuscator, the third-party libraries it depends on are generally obfuscated.664

To evaluate how renaming obfuscation techniques influence apps, we counted the different665

method signatures (i.e., class name, method identifier, parameters, and return value of a666

method) between the original and updated version methods. Only in the Similar results,667

135 of 429 Similar methods (31.5%) have different signatures. Moreover, based on manual668

analysis, only one signature is renamed by developers, and all the others are caused by669

compilation and obfuscation. It shows that the renaming obfuscation is commonly applied670

in apps, and PEDroid can resist it to a certain extent.671

6.3.3.3 Comparison with previous works672

We compared our approach with the previous works, including Androdiff [8], components673

of Androguard [3], and SimiDroid [20]. They can also provide method-level diffing between674

two versions of apps, and divide the results into four categories: Identical, Similar, New675

and Deleted. We used the same dataset dBench for experiment. The results are shown in676

Table 4. It is obvious that PEDroid identified much more modified methods as well re-677

trieved less wrong matching relations, with the highest recall of 92.86%. Especially, the other678

two tools incorrectly regarded a large number of Identical methods as modified methods. Al-679

though it does not mislead patch identification, the overhead would be greatly increased. So,680

PEDroid is much better than the other tools.681

Androdiff adopts the normalized compression distance algorithm to calculate the sim-682

ilarity of the two methods and extracts the instruction sequence of the basic block as the683

feature of the method. However, it can not resist the subtle changes caused by compilation,684

and most of the false positives come from the changes in the resource ID influenced by685

compilations. In addition, the tool does not consider the overall feature of a class and only686

performs similarity matching from the instructions at the method level.687

SimiDroid also provides code-level similarity comparison, but it assumes that methods688

with identical signatures have matching relations between two versions. So, renaming ob-689
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Table 4 Comparison with Androguard and SimiDroid. The Total in the table indicates the
number of reported methods, and the TPL and the Project indicate the reported similar methods
in project source code and third-party library, respectively. The T PP , F NP , F PP and RecallP

indicate the accuracy in project code.

Tool Total TPL Project T PP F NP F PP RecallP

Androdiff 816 525 291 105 133 186(16) 44.12%
SimiDroid 2111 1550 561 138 100 423(18) 57.98%
PEDroid 429 195 234 221 17 13(13) 92.86%

fuscation techniques have a great impact on this approach. It is the reason why SimiDroid690

reports much more modified methods than the other two tools, where it treats two unrelated691

methods as matched and detects the changes between them.692

6.3.4 Patch identification693

PEDroid discovered 60 patches, where 50 of them belong to the projects and 10 methods are694

in third-party libraries. Similar to the evaluation of differential analysis, we only evaluated695

the accuracy of code changes in the projects without the ground truth of third-party libraries.696

6.3.4.1 Accuracy697

To evaluate the accuracy of PEDroid in identifying patches, we manually identified all698

the patches and non-bugfix updates of all the 13 updates by analyzing their commits on699

GitHub. As shown in Table 7 and Table 8, among all the 83 commits in dBench, a total of700

36 commits are identified as patch, where 47 commits are non-bugfix updates, including 35701

feature updates and 12 code refactorings.702

Among 36 commits containing patches, PEDroid successfully identified 28 patches dur-703

ing patch identification and missed eight, while it incorrectly identified seven of the 47704

non-bug updates as patches. In particular, a commit could be associated with multiple mod-705

ified methods. As for the amount at the method level, 41 methods were correctly identified706

as patches, and nine were false positives.707

False negatives. The false negatives could be generally divided into three categories:708

1. Deficiency in implementation. Four of eight false negatives come from the false negat-709

ives of call site analysis described in Section 6.3.1. It is caused by the obfuscated name710

of callbacks and overriding methods.711

2. Code refactoring. We found that some patches are also accompanied by code refactoring,712

where the modified dependencies are encapsulated in a new method. So, PEDroid could713

not discover it by intra-procedural analysis, which brings two false negatives.714

3. Limitation of insight. There are two false negatives that do not meet our insight. One715

is to modify the constant value in a static constructor. Another one is to add text on UI716

which only involves a method invocation addition without modifying any dependency.717

False positives. Seven non-bugfix updates are incorrectly classified. Similarly, we also718

divide them into three categories:719

1. Deficiency in implementation. One false negative comes from incorrectly matching between720

basic blocks. It results in different extracted dependencies at different usage of an ex-721

ternal value.722



H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:21

2. Code refactoring. The code refactoring also leads to dependency modification, which723

brings two false positives to the results.724

3. Irrelevant dependency modification. Four of the false positives are due to dependency725

modification irrelevant to patches. Three of them are caused by the added control de-726

pendencies, where two are to check and adapt different Android versions and one is to727

add a branch to enhance the feature. And the other one is introduced by the added728

number of parameters of the callee, which leads to the addition of data dependencies.729

6.3.4.2 Comparison with other works730

Since there is no previous work to distinguish patches from other code changes in Android731

apps, we evaluated whether the tool using pre-defined patterns could detect the related bugs732

to find out these patches. Spotbugs [35] is a state-of-the-art tool that can detect more than733

400 types of bugs. Find security bugs [10] is a plugin of Spotbugs, which can detect 141734

different vulnerabilities on Java and Android apps.735

First, we applied dBench on the tool SpotBugs with its component Find Security Bugs,736

and detected the original and updated versions of the app updates respectively. Then we737

found out the difference of the bug reports between two versions with the method-level738

matching relations generated by differential analysis. Finally, only two different bug reports739

were found, and they belonged to one commit. It is because detecting bugs according to740

manually defined patterns has limitations which cannot discover the unknown bugs.741

6.4 Applicability742

6.4.1 Performance743
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Figure 6 Performance on real world dataset.

PEDroid extracted a total number of 98,591 patches from the dataset. In detail, 45,805744

patches were identified in 320 small updates, 31,549 patches were identified in 171 minor745

upgrades and 21,237 patches were identified in 77 major upgrades. The time cost is shown746

in Figure 6a, where the updates are grouped by the size of APK files (e.g., the first group747

consists of updates with the number of classes less than 3000, and so on). It shows that size748

of apps has a great impact on the overhead of PEDroid, especially for patch identification.749

Since the number of updates in each group is different, Figure 6a also gives the number.750

Furthermore, the time cost distribution of updates is given in Figure 6b. It is concluded751
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(a) white list (b) black list

(c) data processing

(d) field addition to record status

Figure 7 Case Study for common patches

that 63.91% of updates could be analyzed within 5 minutes, 83.98% of apps could be analyzed752

within 10 minutes, and 94.37% could be analyzed within 20 minutes.753

6.4.2 Analysis of Extracted Patches754

In order to illustrate that PEDroid can help the analysis based on patches, we made a755

further analysis to understand the patches extracted from updates of the pre-installed apps.756

6.4.2.1 Discovered Patches757

To demonstrate that PEDroid can extract effective patches from the real-world apps, we758

first randomly selected several reports on pre-installed apps for manual analysis. We dis-759

covered many typical cases of patches, and the security check addition appears most among760

them, which confirms the conclusion of the previous work [41]. Another common repair case761

is adding an exception-capture operation to prevent the app from crashing. In this section,762

we discuss the typical cases and how they improve the security and stability of apps.763

Security check. Adding security checks is a common way to fix bugs. This type of patch764

can be detected because a new control dependency is always added. Due to complex765

scenarios such as network communication, local data access, and user interaction, the766

added security check also has various purposes, where two of the most common cases767

are checking whether the referenced object is null to avoid NullPointerException, and768

calling TextUtils.isEmpty to prevent empty strings. In addition, we show two typ-769

ical cases of adding black and white list checks to discuss the security improvement by770

checking addition.771

Figure 7(a) gives a patch with a white list check. The method has @JavascriptInterface772

annotation, which means that it can be invoked by web pages in WebView. In the fixed773

version of the method, the domain name of the web page which invokes this method is774

checked, and only the domain names in the white list are allowed to use this method,775

which increases the security.776

The function of the method in Figure 7(b) is to download files. The security check at line777

3 is added to resolve a vulnerability. The method checkSpecialChars checks whether778
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public class CaseClass {
static {

CaseClass.CRPYT_IV_BYTE = new byte[]{34, 0x20, 33, … , 35, 0x20, 0x20};
CaseClass.CRPYT_KEY_BYTE = new byte[]{33, 34, 35, … , 35, 34, 33};
...

}
public CaseClass(Context arg2) {

...
this.mCryptoUtil.init(this.mContext);
this.CRPYT_IV_BYTE = this.mCryptoUtil.initIV();
this.CRPYT_KEY_BYTE = this.mCryptoUtil.initKey();
this.loadData();

}
protected void loadData() {

...
String iv = Cryptor.xorKey(Case3Class.CRPYT_IV_BYTE);
String key = Cryptor.xorKey(Case3Class.CRPYT_KEY_BYTE); 
String iv = Cryptor.xorKey(this.CRPYT_IV_BYTE);
String key = Cryptor.xorKey(this.CRPYT_KEY_BYTE);
String data = new String(Cryptor.decrypt(iv, key, Base64.decode(cipher, 0)), "utf-8");
...

}
}

Figure 8 Case Study for hard-coded key removal

there are special characters in the file name. The existence of these special characters779

could lead to path traversal vulnerability. Once these special characters are detected,780

this method returns directly and does not continue downloading the target file.781

Data processing. Figure 7(c) gives an example of modification of data dependencies to782

correct data processing. In the buggy version, the blank characters are not trimmed783

after obtaining the path of the directory. As a result, the corresponding library cannot be784

found and the function is unavailable. This patch will be reported through modification785

of data dependencies extracted from the invocation of the constructor of File.786

Field addition for status recording. This patch is applied to check before resource access787

or release and sets the field to the corresponding value when resources are required and788

released. The case is found through the inconsistency of control dependencies. The case789

is shown in Figure 7(d).790

Hard-coded key removal. A security patch of discarding the usage of hard-coded keys is791

given in Figure 8. The decryption key and IV used in the original version are hard-coded792

and defined in the static constructor (<clinit>). The updated version is generated in793

the constructor (<init>). PEDroid identified the patch by comparing dependencies794

between the two versions of the method loadData. In the buggy version, the hard-coded795

key and IV are static member variables of the class, and its acquisition has nothing to796

do with the affected parameter this. But in the fixed version, the decryption key and797

IV are generated at runtime, which are bound to the object instance, and have a data798

dependency on the parameter this which uses external values.799

In addition to the examples of modifying the processing logic listed above, handling the800

errors is also commonly encountered in our manual analysis, including the error value check801

to end wrong execution and exception capture to prevent crashes. Since these cases are easy802

to understand, we would not list them here. Especially, exception capture will be further803

discussed later.804

6.4.2.2 Application of Patches805

Based on the typical patches, we further identified similar patches to find out what patches806

are frequently applied to fix bugs and whether the developers make the mistakes commonly.807

Specifically, we selected the five simple patch cases found in the manual analysis and used808

the buggy and fixed versions of the method and the potential buggy operations in reports to809

determine whether the patch is the same type as the cases. For security checks, we collected810
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two common types, i.e., the addition of null and TextUtils.isEmpty check before the811

buggy operation. And we located the added invocation of trim which was used to correct812

the data processing of a buggy operation. Similarly, when a check of a boolean field is813

added and the state of the field is modified around the buggy operation, the check would be814

marked as field addition for status recording. For exception capture, we focused not only815

on the addition of exception capture but also on the types of exceptions.816

Table 5 shows the usage of different types of common patches in all the extracted patches.817

It is reported that the check of null reference is added most commonly, similar to the results818

of our manual analysis. Even if we only searched a simple case of correcting data processing819

(i.e., string trimming), we still found that several developers at different vendors, made the820

same mistake and repaired it. It shows that it is a feasible means to summarize the problems821

that have been repaired to find similar problems in other apps.822

Table 5 Usage of common
patches in updates.

Type Total

Null Reference 7682
Empty String 1409
Status Record 269
String Trimming 23
Exception 6289

Table 6 Top 10 most common types of added exception
catching

Type Total
Ljava/lang/Exception 3838
Ljava/lang/Throwable 1353
Ljava/io/IOException 1212
Ljava/lang/IllegalArgumentException 663
Lorg/json/JSONException 633
Ljava/lang/RuntimeException 457
Ljava/lang/NumberFormatException 284
Ljava/lang/IllegalStateException 234
Ljava/lang/IllegalAccessException 225
Ljava/lang/SecurityException 223

823

824

In addition, we analyzed exception-capture patches and found the types of exceptions825

that are easily ignored during development. Table 6 gives the top 10 most common types826

among our extracted patches and the number of exception-capture patches corresponding to827

each type. Especially, a patch could add the capture of multiple types of exceptions at the828

same time, so the exception-capture patches counted in Table 5 may be counted multiple829

times in Table 6. It shows that developers often simply use the basic type Exception to830

catch all types of exceptions, as well Throwable which can catch both exceptions and errors.831

As for other types of exceptions, the capture of IOException is patched most frequently832

in the extracted patches because it can be thrown by unexpected behaviors in a variety of833

scenarios including network and file I/O. The exceptions are easy to be accidentally missed834

by developers.835

7 Discussion836

7.1 Limitation and Future works837

In the following, we discuss limitations and future works to improve the accuracy of the838

analysis performed by PEDroid.839

First, PEDroid is designed to resist the renaming obfuscation because it has been840

broadly used by many Android applications. However, to be sensitive to code changes and841

efficiently retrieve matching relations, PEDroid chooses to retain features of instructions in842

the method body and utilizes package trees to assist the matching process. Given our current843

design, some advanced obfuscations can impede PEDroid to a certain degree. For example,844

some obfuscation tools can move a sub-package from one package to another, so as to modify845

the package hierarchy. Considering commonly-used obfuscators such as ProGuard do not846
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totally break package structures, and our approach does not require the package structures847

to be exactly identical, we believe the selected strategies are acceptable in practice.848

Second, PEDroid is mainly designed based on static intra-procedural analysis consid-849

ering applicability to real-world apps. However, only analyzing the data dependencies and850

original operations within a single method could bring both false positives and false negatives,851

especially when meeting code refactoring. Meanwhile, the more precise usage of external852

values is more likely obtained through the inter-procedural taint analysis. We believe the853

inter-procedural feature could be implemented by considering method invocation, which is854

an interesting future work.855

Third, PEDroid tries to find out patches and the corresponding bugs without manually856

defined patterns [19] or generated signatures of known patches or bugs [44]. Although the857

approach could not cover patches of all types of bugs (e.g., the two false negatives beyond858

the insight), it could make up for the gap in this research field to a certain degree. And we859

have evaluated the effectiveness by running our approach on dBench, and identified most860

patches. The results on the real-world dataset also show that rich types of bugs can be861

discovered through this approach.862

7.2 Usage of Extracted Patches863

In the paper, we discovered some typical cases of bugs and patches in Android apps and sum-864

marized the rules by manually analyzing the patches to distinguish them. Similarly, several865

APR (Automated Program Repair) techniques adopt manually defined code transformation866

schema to automatically repair bugs in Android apps [48, 25, 42, 5, 36]. Therefore, it is867

feasible to summarize new schemas through the analysis of the extracted patches and then868

apply them to APR. In addition, lots of efforts focus on learning from the existing patches869

which require no manually defined templates and empirical knowledge [17, 40, 26, 24, 37, 21].870

However, these works are all designed for repairing source code rather than bytecode. We871

believe that our work can make up for the lack of learning data sets to promote the proposal872

of the technique on bytecode.873

The extracted patches can also be used to detect similar bugs. Some binary-level simil-874

arity detection and code reuse detection techniques [15, 46] can take the buggy version of875

patched methods as the comparison target and detect whether there are similar problems876

in other apps.877

8 Conclusion878

We propose an approach to extract bytecode-level patches from Android apps, which includes879

two phases: obtaining the modified methods from the neighboring versions of Android apps880

and identifying patches among them. To achieve the first step and resist name-based ob-881

fuscation, we employ similarity comparison at the method level based on code features and882

the structure of the app. We design an approach to detect patches by analyzing the usage883

and internal semantics of the original and updated versions of methods. We applied the884

approach to extract patches from 13 updates of open-source projects and identified 28/36885

patches. To evaluate the applicability to real-world apps, we further performed an experi-886

ment on the real-world dataset, which is proved that this approach can find various types887

of patches within a reasonable amount of time.888
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A Dataset1040

A.1 dBench1041

dBench includes six popular open source Android apps on GitHub shown as Table 7 and 8.1042

Except for markor with 900+ stars, other projects have 1k-4.4k stars.1043
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Table 7 Updates in dBench and all commits - part.1

Project Old Version New Version Commit id Bug fix

markor[27]

2.2.3 2.2.5

5b53574c88888ecbcc4b5c712d26a4c0e4f89650 %

464579b59047bbacb2f9fb7edb9fb9563a9dfe2c %

35e25bff0de3521a41c4574561b958a8068fafa1 %

d0a5103223430e7af925a48f49affa0ae64ef83b %

37a9c135e7a2502f8ce1b6b463614a7c10168816 "

9dd83708e49f45d85e2c4f3ef9cc21a3019d327d %

cbd37234b587222c974b29a196f54c8f20f08b77 %

14cd95d37d0c12bacb2bd290bdee07d4a949ea24 "

47cff19dd5030d2c3ce470ce525fb2ab20f19727 %

22b7681cb52eb4f820c1bd036683b102be144b82 %

57745bb82ef225223e6780f65bc0d5dabf81cead "

2.3.1 2.3.3

11895e5554c59033927a7fb5e8139797165a703d "

e182dcc64057cd5f1bd8ac63492de4fa6f2f6658 "

51e8febed782e824ae4953bc266777828afc076e "

2f5352c59e8e1edc15ad7825d3b50d0980ec70b1 %

46d9165b0a6f3a6a6e243fb2e8c4417c9bab0666 "

c9a9cc7736084355cc422b3822a8da61d58b9569 "

d24f2cb29d76422d5e01f69d9b01b1ff78c8c8db %

63808c166aef82aaee2ed5ca67dd8a10eb2fa054 %

df02630b66914176f28d07a32ccde9478d20742c %

6e2b07c7c1b61718904096245f9106fd14b1447e %

f725a85011fc9342d37f55c58ba35926a94b6d0a %

76184b2aa73a215d7e5c66a3dfee6db8f8cfad1d %

27a0e8506abcdcaf2d7801493712eafb4e6ffbd7 %

gpstest[14]

3.7.4 3.8.0
0b47fca1a9f06017b6d319269764ac6cec9b1f7b "

8ed5b31c8e356b79cfe8b8bba49a10156101f758 %

3.9.5 3.9.6
c14a1025d6026aebef5747fb53eb28e891b02501 "

944733d36f44451096823200242f0ebdd5ef02c6 "

396c52a796e924cc5507bb087b4eadd684806fda %

3.9.6 3.9.7
70d8ec5197117660e6251945e804829e5221dbbe "

5625b632c4a60767950f61651629d09c8cb9fbe2 %

MaterialFiles[28]

1.0.0-beta.11 1.0.0-rc.1

b864874d87450591f20562f1e240ff228393c554 %

cfcfce564e42db79a7668dbedab978a35dd01e1e "

e0f488a7950402ac6464dae451b7a462898af316 %

8480642ddf39521eff7f30a79c5d1feec5a7d4cb "

2c379913b0cf6272e1b60da265a3f7ab32cfdaaf %

0d98dc34fc1cee5908514aa8eb8679f82c3d36dc "

1.0.0 1.0.1

fdd9940d98974b8291496922ddb98714162b0ccc %

041d384eed4cdc85d16ef063dd966a300b3b4769 %

428fab2cb24512e90d6d94e781134e85de29c104 "

fbc862d8a80bca16365dd8cfc42f0f846b0b2935 "

c81f380f4ec11071f139f3993987b15d3cb4a77c "

4b14cefb59d746822e1f31a92ecf46e15c2d88ff %

1.2.0 1.2.1

a5c07bc764c0678d423594ff454349ab63def5aa %

fc22c3ada63c8392b1dcced1c96d818404ba140b "

b78c799aa0f356d551c12904f07e2c9dfd3aba8e %

0f0d306e5db2e2afea257449c050936c5a60a5c0 "

d4918e0c5a3e11d0f7e49033aa3625c5b5138da9 %

618806bafcf6cc424b84471d485744f96dba4b4b "

ac8ca9988f761b5e8cdf7d0ecbd47d215540d145 "
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Table 8 Updates in dBench and all commits - part.2

Project Old Version New Version Commit id Bug fix

andOTP[2]

0.2.6 0.2.7

77655b610897eb59e6ff7fcc4f13454f34b4a86d %

f0518a265c858414b74ef84e2e8bd945a96ad59a %

dd97ac87f059f8c1498d17d7c99ac6dc70068ea5 %

f41eb620aadb3dd203f923d934ce1f6da713c901 %

cbdced2df1d5ab5fd35d17c7230b60a89d3d4012 %

247f4e938ed6def7668e3259c81a6fc9e1dd5db0 %

842d49b68f86412d246c9ab9a8d59dcbc11c4f8c %

ce696861c7497a67c72be0a315fc9d1e5cbd0489 "

0.7.1 0.7.1.1

73f8c14ec389a2ad8c2a61edef2bcfd4b4894b70 "

cdc54028b3395401fa65665bc5e01e6a279071d3 %

c1d6c6b2b8c01fbfb3a0ab7ba5b3c247bf80cd3f %

5215308a1afcf774499850967450725201dbb1c9 %

gnucash-android[13]

2.1.1 2.1.2

57241e8c064302a215aa74501e0dc1ba31e6a096 "

1794882757a37c108c4b4cf40f6876aa7a51c87d "

dae1caf7078bdd3e425e25cbfd5a37eb2309e0e6 "

f81ad6067a4136b34ccfc277cd21913682a3ce31 "

a363eebaff01f7fdadbda5edc661aa35133a450a %

404759620a5a33cecf0bf836fe5802401eacf4d6 "

2.1.2 2.1.3

ff894a5ce5901bafc8626279d09278efc229ef23 %

6048bd8d0604370a38189dad9ba451aa121fc7bb "

a6aa211734accf94664da91316cf6e26bed0de92 "

b2e9bf7f38a287985656e48ec6b13979a070dcd0 %

d790b805ec17fd22ab4566ae1d24cefe72486e36 "

724a686177798685112a02fcc3873873fb7a9595 "

952cb2b697b9bd946437e19db4597d23b3446f55 "

Anki-Android[4] 2.16alpha24 2.16alpha25

a38503e08c0a8f0445adb527a015aa3a82cd4404 %

672c44eb664284339b697bff27ec8b37925c3c31 "

5135b06f4ca61cb15f75973362e2d25340925524 %

09430ad55c4186f5d9e52848005965270360308d %

81d1d134863b8ab2c0560f9f11148b6a91996c0d "

99ea713f780a428332990d3e5b7033d714a3ffad %

b7d283f96fd3922806beb5eeb499e475f034d5a8 %

0f7b0bebed9539c6ee46608539be23c2e5db4780 %
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