Rethinking the Security of l1oT from the Perspective of
Developer Customized Device-Cloud Interaction

Yiwei Zhang Juanru Li Dawu Gu
Shanghai Jiao Tong University Shanghai Jiao Tong University Shanghai Jiao Tong University
yYyyyyw@sjtu.edu.cn jarod@sjtu.edu.cn dwgu@sjtu.edu.cn
ABSTRACT There are severe security threats [1, 5, 13, 27] against this procedure.

To achieve powerful inter-connection in an IoT system, IoT cloud
involved communication is widely deployed due to its various ser-
vices. While IoT clouds provide many strong security mechanisms,
lots of IoT devices are still configured with vulnerable interaction
procedures with clouds. And the root cause of these security issues
in such procedures is less understood today.

In this paper, we report a practical study of IoT cloud secu-
rity regulations on IoT device development solutions. Instead of
checking real-world IoT devices, we explore IoT security, especially
the security of interaction between devices and clouds, from the
perspective of IoT developers and illustrate why flaws during devel-
opment could evolve into vulnerabilities on real-world devices. To
better understand the problem, we describe three security-critical
device options that can be customized by IoT developers with their
own features, and propose a new approach to check whether a
specific IoT cloud regulates the security of IoT solutions with vul-
nerable device options. With the evaluation of eight mainstream
IoT cloud platforms, our study brings to the pervasiveness of the
security hazards in IoT cloud security regulation during IoT device
development, resulting in manufacturing vulnerable IoT devices.

CCS CONCEPTS

« Security and privacy — Authentication; - Software and its
engineering — Software development process management;

KEYWORDS
IoT Security, IoT Development, Cloud Regulation

ACM Reference Format:

Yiwei Zhang, Juanru Li, and Dawu Gu. 2022. Rethinking the Security of IoT
from the Perspective of Developer Customized Device-Cloud Interaction. In
The 37th ACM/SIGAPP Symposium on Applied Computing (SAC °22), April 25~
29, 2022, Virtual Event, Czech Republic . ACM, New York, NY, USA, Article 4,
9 pages. https://doi.org/10.1145/3477314.3508389

1 INTRODUCTION

Components of IoT systems (IoT devices, [oT companion apps, etc.)
prefer to interact with each other under the help of IoT cloud. In
this process, the security of interaction between IoT devices and IoT
clouds (device-cloud interaction for short) is especially important.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC °22, April 25-29, 2022, Virtual Event, Czech Republic

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8713-2/22/04.

https://doi.org/10.1145/3477314.3508389

For instance, if the attacker can access the communication channel
between the IoT device and the IoT cloud, then he may also be able
to conduct relevant attacks, such as device data tampering and user
privacy leakage. Furthermore, if the authentication mechanism for
the device-cloud interaction is vulnerable, the attacker then could
launch device impersonation attacks.

Typically, an IoT cloud provides multiple protective means [43,
48, 58, 59, 65] for the device-cloud interaction to avoid potential
threats. First, IoT cloud usually supports device identification mech-
anisms to prevent malicious ones faked by attackers. And each IoT
device is configured with an identifier as its unique identity. This
makes attackers unable to impersonate as the legitimate devices
as long as they can not learn about these identifiers. Second, vari-
ous data confidentiality protection strategies are provided to avoid
data leakage during device-cloud interaction, including Transport
Layer Security (TLS), Datagram Transport Layer Security (DTLS),
and even encryption in application protocols. These protection
strategies ensure that the transmitted data would not be leaked to
an attacker just through passive eavesdropping. Third, some IoT
clouds implement anti-replay schemes for the device-cloud interac-
tion. These schemes usually involve values tagging each message
only or valid in a short time period so that there is enough time
for an attacker to intercept, re-organize and replay the messages to
achieve specific operations.

Unfortunately, despite powerful security mechanisms provided
by IoT clouds, vulnerable device-cloud interaction is still com-
mon in real-world IoT system. Prior studies [43, 44, 62, 65] have
demonstrated various security issues in device-cloud interaction,
such as flaws in IoT application layer protocols, communication
deciphering and privacy leakage through traffics. Moreover, we
found that most existing security analysis methods on IoT sys-
tems [48, 51, 52, 57, 61, 62] focused on specific IoT devices (e.g.,
wearable health trackers, smart toys) or specific implementations
(e.g., remote binding, MQTT protocols), but a systematic study to
explore the root cause of IoT security issues is generally missing.
Hence, in this paper, we trace back to one of the initial phases of
an IoT system — the IoT device development (IoT development for
short). During this phase, IoT developers are usually allowed to
customize their IoT device development solutions (IoT solutions
for short) to adapt to the device resources and application require-
ments. Since these IoT solutions, involving various device functions,
are built to develop IoT devices, they are directly relevant to real-
world device-cloud interaction security. If insecure IoT solutions
are not checked and forbidden during IoT development, vulnera-
bilities will be eventually introduced into real-world IoT devices.
In response, in order to prevent such insecure solutions, most IoT
cloud providers claim they have implemented security audit on

https://doi.org/10.1145/3477314.3508389
https://doi.org/10.1145/3477314.3508389

developer-customized IoT solutions. But since the audit procedures
on IoT clouds usually act as black-boxes, whether an IoT cloud
would regulate the security of customized IoT solutions is still less
understood today.

In this paper, we tend to reveal the security of cloud regula-
tions on the IoT solutions during IoT development. We have a
new approach from the perspective of IoT developers rather than
real-world device audit. In particular, we have observed IoT clouds
usually provide various device options for IoT developers to config-
ure on their own ways. These device options are configured in an
IoT solution and synchronized on the IoT cloud, and the security of
IoT solutions mostly depends on the security of customized device
options: if these options are vulnerable, the IoT solution, as well
as the developed device, will be insecure. Therefore, we aim to
check whether a specific IoT cloud accepts an insecure solution
with vulnerable device options.

To achieve our goal, we first described three security-critical
customized device options that would directly affect the security
of IoT solutions, especially the device-cloud interaction procedure.
Then, we proposed a practical approach about how to build an
insecure solution. Finally, we conducted a series of practical tests
on eight mainstream IoT clouds in United States and China to check
whether they make strict security regulations on these insecure
IoT solutions. Our testing demonstrated a non-optimistic result:
all the eight IoT clouds accepted insecure IoT solutions with vul-
nerable customized device options, indicating that they all did not
implement comprehensive security regulations on IoT solutions.
We observed that even though GoogleCloud, the only IoT cloud that
adopted relatively comprehensive security checks, still ignored the
vulnerable device identifier issue. More seriously, three IoT clouds,
i.e., Aliyun, QcloudE and QcloudH, never applied any security regula-
tions according to our tests. As a result, IoT devices developed with
insecure solutions on these IoT clouds will be also vulnerable. And
the attacker can easily perform attacks against real-world devices,
such as device impersonation, Man-in-the-Middle (MITM) and re-
play attacks, to steal sensitive device data, leak user privacy, and
even hijack IoT devices.

2 BACKGROUND

Device-cloud interaction is vital to IoT ecosystem and the IoT devel-
opers have to implement and configure corresponding interaction
functions during IoT development. In this section, we first briefly
present some basic knowledge of IoT system. Then we discuss
the related works about IoT security analysis, and introduce our
motivation.

2.1 Definitions

We first define essential concepts in IoT system composition, de-
velopment and system interconnection. Figure 1 illustrates the key
components and procedures in an IoT system.

IoT system composition. Three components, IoT device, IoT user,
and IoT cloud platform (IoT cloud for short) managed by the IoT
vendors or other third parties, are commonly involved in an IoT
system. An IoT device is deployed for data synchronization (i.e.,
collecting data from sensors and synchronizing the data with end-
users) or command processing (i.e., manipulate the devices based on

loT developer 10T solution loT cloud

loT device loT user

H

H

E O Remote

: > . communication
H .-

s e commeniaaten,
H H H !
: : : :
H H H !
: E E Device-cloud E
E H H interaction '
: : : V
H H H

: : : D L

H = ! ' ocal

: ol i : @ & communication

H 0000]_ — <« >

= =] HON.

H .

H .

H .

H .

L H

loT Development loT System Interconnection

Figure 1: An overview of components in an IoT system

user commands). An IoT user is the device owner or actual controller
who is able to send commands to operate the IoT device. An IoT
cloud is involved to interact with both the deployed IoT device and
the user for data transmission, data storage, data processing and
even identity authentication. And some IoT clouds providing data
visualization are also used to manage IoT devices, such as firmware
updating and device status monitoring.

IoT development. In this paper, we refer the IoT development, the
initial phase of IoT system design and implementation, as the pro-
cedure to build an IoT solution, which involves both implementing
software components (e.g., various device services and hardware-
related functions) and integrating them into device hardware parts.
Typically, two main roles are played in the IoT development. IoT
manufacturers refer to IoT companies that develop and produce the
IoT devices in large quantities through pipelining. And IoT devel-
opers refer to the actual workers who design and implement the
detailed device functions in IoT solutions. Specially, an IoT device
should be developed with functions to interact with specific IoT
clouds for more advanced cloud services, e.g., device data analysis
and remote control. Moreover, IoT developers usually develop the
IoT devices based on the device application scenarios and IoT man-
ufacturers’ requirements, such as energy, memory, security and
other manufacturer-featured options.

IoT system interconnection. In a typical IoT scenario, a user is
able to control her device via local communication and remote com-
munication. The local communication refers to the user and the
device directly communicate with each other through same Local
Area Network (LAN) [25] while remote communication refers to
the user and the device can communicate with each other under
the help of IoT cloud even they connect to different LANs. Obvi-
ously, the remote communication involving the IoT cloud is more
flexible to apply in common scenarios to connect various terminal
devices in different networks, in comparison to local communica-
tion. Moreover, in remote communication, the interaction between
the user and IoT cloud can be optional but the interaction between
the device and IoT cloud, namely device-cloud interaction, will never
be ignored. For instance, the user who is acted by an IoT developer
may directly manage and control the device on the IoT cloud con-
sole. Hence, maintaining and analyzing the security of device-cloud
interaction is extremely critical due to its extensive application and
necessity.

2.2 Security Analysis Methods for IoT
Ecosystem

Our paper focus on the device-cloud interaction security. In the
following, we first discuss the existing security analysis studies for
IoT ecosystem and then introduce our motivation.

Some existing works have been done to analyze the security of
IoT devices. Some works utilized device firmware to analyze device
security. Shoshitaishvili et al. [60] proposed a model of authen-
tication bypass flaws and designed a binary analysis framework,
Firmalice, to identify the occurrences of these vulnerabilities auto-
matically on embedded device firmware. Costin et al. [49] performed
a large-scale static analysis of firmware images, while Kim et al.
[53] presented a dynamic analysis of firmware in scale via arbi-
trated emulation. And David et al. [50] proposed a static analysis to
find CVEs in stripped firmware images by finding similarity over
procedures. However, IoT manufacturers usually do not publish in-
formation about device firmware files as well as their composition.
And even sometimes firmware can only be obtained by extracting
from real IoT devices, making analysis consuming, inefficient and
difficult to cover a large scope of devices. Some other works studied
the IoT device security via IoT companion apps. Wang et al. [63]
demonstrated companion mobile apps for IoT devices could reflect
the security of device themselves. Chen et al. [47] presented and
implemented an automotive fuzzing framework, IOTFUZZER, to find
memory corruption vulnerabilities in IoT devices without firmware.
And Redini et al. [56] designed another fuzzing tool, DIANE, which
utilized fuzzing triggers to fuzz IoT devices automatically. For these
studies, they only focused on interaction between device and apps
(users) without involvement of IoT clouds, so that they were unable
to evaluate the security of device-cloud interaction.

Prior studies also have been focusing on the authentication and
communication security in IoT systems. Srinivasa et al. [61] in-
vestigated the exploitation of misconfigured IoT devices by IoT
honeypots deployment and network telescope traffic analysis. Jia
et al. [52] performed a systematic security study about the im-
plementations of the general messaging protocol, MQTT, on the
protection of IoT platform. Chen et al. [48] reported the analyses of
IoT remote binding security and discussed various practical designs
as well as the attack surfaces. Zhou et al. [65] described the secu-
rity analysis of the interactions between IoT devices, mobile apps,
and clouds in smart home scenarios and focused on weaknesses in
state transition diagrams of the three entities. Apthorpe et al. [44]
demonstrated that privacy sensitive in-home activities could be
analyzed by smart home device traffics even they were encrypted.
Valente et al. [62] analyzed the security and privacy practices of
smart toys and showed attackers could decrypt communication and
inject audio. Unfortunately, all these studies are based on released
commercial products and just focused on several typical types of
IoT devices and their specific implementations. The studied devices
are sometimes not representative to reflect the security issues in a
wider range, and they cannot help analysts understand why flaws
were introduced by developers.

3 METHODOLOGY

In this paper, we aim to check whether an insecure IoT solution
(due to the improper customization of developers) could be applied

to popular IoT clouds, and hence the use of such insecure solu-
tion could lead to potential security breaches. We extend existing
researches on device-cloud interaction security from a novel per-
spective — IoT development, the initial phase of an IoT device life
cycle. We summarize two major reasons that vulnerabilities are
easily introduced to the real-world IoT devices: 1) [oT developers de-
sign and build insecure IoT solutions; 2) IoT clouds do not conduct
strict regulations on the security of these customized IoT solutions.

To systematically study how insecure IoT solutions are built and
whether IoT clouds offer detailed security regulations to prevent in-
secure customized IoT solutions, we propose a new test approach (as
illustrated in Figure 2). Generally, our approach can be divided into
three main phases: @ generating vulnerable device options;
® building insecure IoT solutions; ® testing security regula-
tions in IoT clouds. This approach requires the analyst to play the
role of typical IoT developers and utilize the existing infrastructures
(e.g., IoT SDKs, development documents and cloud servers, etc.)
provided by IoT clouds, attempting to build insecure device-cloud
interaction solutions by enumerating vulnerable options of device
identifier, data transmission and anti-replay consideration,
which are likely to be introduced by developers during IoT devel-
opment. After that, the approach tests whether a specific IoT cloud
accepts any of the insecure solutions. In this way, one could com-
prehensively examine to what extent the IoT cloud regulates the
security of its belonging devices.

3.1 Customized Device Options

Before building insecure solutions, we first have to clarify what af-
fects the device-cloud interaction security in an IoT solution. Hence,
we have investigated the development procedures of mainstream
IoT clouds, and found that in order to satisfy various resource and
application requirements of different IoT manufacturers, an IoT
cloud usually provides several device options for IoT developers
to customize their own IoT solutions. Some of these options are
closely relevant to the device-cloud interaction security. And if
these options are configured insecurely, the IoT solutions, as well
as the developed IoT devices, will be likely to be introduced vulner-
abilities.

Various device options are usually provided for IoT developers
but not all device options could directly affect device-cloud inter-
action security of real IoT devices. So we first manually collected
the customized device options from the documents (i.e., official
development references and code demos) of mainstream IoT cloud
platforms and then filtered those directly linked to the device-cloud
interaction security properties such as identity authentication and
data confidentiality. Typically, there are three security-critical de-
vice options recognized, i.e., device identifier, data transmission
and anti-replay consideration.

e Device identifier. A device identifier is a unique string to
identify an IoT device’s identity and different devices have
different device identifiers. The IoT cloud usually allows
IoT developers to generate and apply the device identifiers
with their own features. For example, some developers di-
rectly use the device MAC address as the device identifier
while some other developers prefer containing their manu-
facturer’s name in the device identifier.

(Vulnerable Device Identifiers)

A

Glulnerable Anti-replay Consideratioa

[}
.
L
L]
.
:
(Vulnerable Data Tr issi) !
L]
.
4 10T SDKs Compiling
.
.

Peccccccccccna

@ Generating vulnerable
device options

Simulators

@ Building insecure IoT solutions

[Incomprehensive
L= » ‘E' Security Regulations

Accept insecure |oT solutions

i '
'

! :
: : :
H Feedback | |dentify insecure loT solutions .
H c > - '
' '

! :
H '
'

! :
H '
H]

© Testing security regulations in loT clouds

Figure 2: Our approach to check whether IoT clouds regulate customized IoT solutions.

e Data transmission. The data transmission options refer
to device-cloud communication protocols and IoT devel-
opers are usually allowed to choose their favorable one
based on the security requirements and application scenar-
ios. For instance, data transmission options about various
kinds of application protocols (e.g., MQTT [28], CoAP [15]
and HTTP [20]) and data protection protocols (e.g., Trans-
port Layer Security (TLS) protocols [41]) are provided for
developers.

e Anti-replay consideration. Anti-replay consideration op-
tions are provided sometimes for developers to determine
whether applying an anti-replay scheme to resist replay at-
tacks and to determine how the anti-replay scheme is imple-
mented. Typically, the IoT cloud will provide some fields for
IoT developers to complete the anti-replay options. Develop-
ers are able to configure these fields to contain anti-replay
values and enable the cloud to check them.

3.2 Generating Vulnerable Device Options

Based on three device options that are security-critical to device-
cloud interaction, we then describe how to generate vulnerable
options that will result in insecure IoT solutions. Moreover, these
vulnerable options are also common in real-world IoT development,
in which the developers lack of enough security knowledge. Hence,
we utilize seven strategies of three types to help generate vulnerable
options as follows.

Vulnerable device identifiers. A secure device identifier should
be able to prevent brute force [14], guessing [26, 38] and imperson-
ation attacks [48, 64, 65], that means the device identifiers should be
constrained on the length, randomness and uniqueness. Referring
to security consideration for OWASP [32] and OAuth 2.0 [30], a
device identifier should be generated with a part constructed from
a strong cryptographic pseudo-random number generator (PRNG)
and the probability of an attacker guessing generated identifier
must be less than or equal to 27128 and should be less than or equal
to 271%°_ Furthermore, it should be unique that represents only one
device and other devices cannot obtain it. So in view of both us-
ability and security considerations, we consider that an IoT device
identifier should contain an at least 128-bit unique pseudo-random
number. Correspondingly, we generate vulnerable device identi-
fier options with three strategies: short-length device identifiers,
guessable device identifiers and non-unique device identifiers.

o Short-length device identifiers. To examine whether an IoT
cloud checks the length of device identifiers to avoid brute

force attacks, we use pseudo-random strings with no more
than 15 bytes as the device identifiers. Specifically, we sepa-
rately generate 15 pseudo-random strings, which are combi-
nations of alphanumeric characters. And the length of each
string is from 1 to 15. Then we apply these strings into IoT
solutions as device identifiers.

o Consecutive device identifiers. To examine IoT cloud regula-
tions on the randomness of device identifiers to avoid guess-
able attacks, we use 10 consecutive strings as device iden-
tifiers. In particular, we generate a 16-byte pseudo-random
string of alphanumeric characters firstly. Then we randomly
choose one byte of this string and separately change its value
by adding 0x@1 to generate the other 9 strings. And these
10 strings only differ slightly by only one sequential byte,
such as dev@@a, dev@ob, ..., dev@@j. This kind of identifiers
are common in IoT development because some developers
prefer to directly utilizing the device MAC addresses [26] or
serial numbers [38] as their device identifiers for operating
easily but both of them are usually consecutive strings.

o Non-unique device identifiers. To check whether the IoT cloud
could prevent non-unique device identifiers to avoid device
impersonation attacks, we utilize one string as multiple de-
vice identifiers. The string is pseudo-randomly generated
with alphanumeric characters, 16 bytes in length. And it
is then configured as the device identifier in multiple IoT
solutions, indicating that more than one developed devices
would be configured with same identifiers.

Vulnerable data transmission. IoT developers are allowed to im-
plement various application protocols, but all the data transmission
should be protected with end-to-end encryption to prevent MITM
attacks. Referring to RFC6749 [30] and RFC7519 [23] documents
that regulate OAuth 2.0 authorization framework and JSON web
token implementations, RFC7457 [40] about known attacks on TLS
as well as NSA [29] and NIST [19] Guidance on TLS protocols, the
transmitted data during device-cloud interaction should be pro-
tected by TLS protocols with the relatively secure versions, i.e., TLS
version 1.2 (TLSv1.2) or higher. And either data transmission with-
out TLS protection or adopting obsolete TLS protocols is vulnerable
to MITM attacks.

We generate the vulnerable data transmission options with two
strategies. Firstly, to check whether an IoT cloud forces the device-
cloud interaction protected by TLS encryption, we implement the
data transmission without TLS protection enabled. Then, we adopt
the old versions of TLS protocols for device-cloud interaction, i.e.,

Introducing

vulnerable

= ! 5 o
device options!

¢ Device identifiers
e Data transmission
e Anti-replay consideration

’a‘a L ¢ 3 - —_—

aws
loT Developer / loT SDK

$2: Configuring customized

S1: Registering to the IoT cloud device options

Compiling

_.|@ ™ Blee D

Burning

Device Projects

$3: Adapting to

. .. 54: D loadi i
hardware characteristics ownloading firmware

Figure 3: The procedure of building an IoT solution

SSL and TLSv1.0/1.1, to examine whether the IoT cloud only accepts
connections with secure versions of TLS protocols.

Vulnerable anti-replay consideration. Anti-replay schemes should
be adopted to prevent replay attacks [42, 45, 54]. Otherwise, the
attacker would be able to trick the devices or clouds by elaborately
intercepting and re-transmitting specific messages. There are three
common anti-replay schemes, i.e., timestamp, nonce and session
token, in which timestamp and session token should be only valid
in a short period’, and nonce should be used only once during a
connection. Thus, to avoid replay attacks, not only adopting the anti-
replay schemes but also implementing proper anti-replay values
are required.

Correspondingly, we adopt two strategies to implement the vul-
nerable anti-replay options. In order to examine whether an anti-
replay scheme is required by the IoT cloud to avoid replay attacks,
we first modify the anti-replay fields to disable anti-replay schemes
in our IoT solutions. Then to further check whether an IoT cloud ac-
cepts vulnerable anti-replay schemes, we configure the anti-replay
fields to enable the anti-replay scheme and implement it with some
improper anti-replay values, such as timestamps or session tokens
generated 30 minutes ago, fixed nonce in different messages. Since
various anti-replay options are applied by different IoT clouds, we
describe the detailed anti-replay configuration procedures in Sec-
tion 4.2.

3.3 Building Insecure IoT Solutions

After generating the device options, the next phase is to build the
complete IoT solutions. And in order to simulate the operations of
IoT developers in practice, we combine our IoT solutions building
with real-world IoT development procedures and implement the
insecure solutions by introducing vulnerable device options to ex-
plore the regulation security of IoT clouds. Figure 3 demonstrates
a typical IoT solution building procedure in practice. We further
customize it and multiple insecure solutions are built eventually, as
are common in IoT development. Generally, the procedure includes
four steps: registering to the IoT cloud, configuring customized de-
vice options, adapting to hardware characteristics and downloading
firmware.

Step 1: Registering to the IoT cloud. Before developing the IoT de-
vice, especially the interaction between device and IoT cloud, it is

“Referring to the session management of OWASP [32], we consider the expiration
time of anti-replay values (i.e., timestamps and session tokens) should be no longer
than 30 minutes.

necessary for IoT developers to learn about interaction services sup-
ported by the IoT cloud as well as the development infrastructures
that include a series of development tool kits, references and other
description documents. In particular, most IoT clouds would pro-
vide an IoT Device Software Development Kit (IoT SDK for short)
to make it convenient for developers to develop the device-cloud
interaction functions. Typically, an IoT SDK provides source code of
many interaction functions (e.g., communication, firmware update)
and allows developers to modify and customize these functions on
their own ways. With the help of IoT SDKs, IoT developers do not
need to develop systems of various IoT products (e.g., smart camera,
smart socket) from scratch. Instead, they can efficiently port exist-
ing IoT SDKs to different models of IoT devices by sharing most
commonly used functions and only customizing a small portion of
the code.

In the first step, we register as a developer account on the IoT
cloud and then collect the cloud services from the provided doc-
uments and device development references, such as device types,
communication protocols and interaction operations supported
by IoT clouds. Then, we also obtain the IoT SDK from IoT cloud
official website or code host platforms (e.g., GitHub), and leverage
it to implement the device-cloud interaction procedure quickly in
further steps.

Step 2: Configuring customized device options. After preliminarily un-
derstanding the IoT cloud and the development process, the second
step is to modify and configure the customized device options based
on manufacturers’ requirements and device application scenarios.
As described in Section 3.1, an IoT cloud usually provides multiple
device development options with different resource requirements
and security levels for IoT developers. Thus, IoT developers have to
customize and configure those device options in this step. Typically,
developers should first create virtual devices via device manager on
the IoT clouds and configure some device basic information, such
as device identifiers, device types, communication options and etc.
Then the same configurations and functions should be synchro-
nized and implemented in local device development projects for
further interaction.

Acting as an IoT developer without enough security knowledge,
we introduce the vulnerable device options (as illustrated in Sec-
tion 3.2) in this step. Specifically, we first create virtual devices on
IoT clouds and then configure them with these vulnerable device
options. At the same time, we synchronize these options in our
device development projects, i.e., IoT SDKs. Since more than one

vulnerable options are generated, device projects are configured
with different options to build multiple insecure IoT solutions.

Step 3: Adapting to device hardware characteristics. Both the first step
(i.e., obtaining IoT SDK) and the second step (i.e., configuring device
options) focus on the device software functions, so the next step for
IoT developers is to implement hardware-related functions which
allow software code to interact and control the underlying hard-
ware (e.g., MCU and integrated modules). These hardware-related
functions should be adapted to device hardware characteristics,
such as memory and modules, and are then combined with the
software functions to a complete device development project.

Different from implementing complex hardware-related func-
tions and using kinds of device hardware in practice, in our ap-
proach, we omit the combination of software functions with hardware-
related functions and implement the device-cloud interaction proce-
dure by directly leveraging the IoT SDK. This is because an IoT SDK
usually acts as an independent component so that it can be com-
piled into different simulators. A simulator works as a real-world
IoT device to interact with the IoT cloud, and implements various
device-cloud interaction services such as reporting device status
and updating firmware. More importantly, a simulator is hardware-
independent so that we do not need to consider hardware diversity
issues. Therefore, in this step, instead of implementing hardware-
related functions, we just construct interaction scripts by invoking
the corresponding interfaces provided in the IoT SDK. These scripts
implement specific device-cloud interaction operations and can be
further compiled to generate simulators. Considering its universal-
ity, our approach focuses on two basic interaction operations, device
data report and cloud commands distribution, which are supported
by almost all IoT clouds.

Step 4: Downloading firmware. Since both software and hardware
functions have been implemented in a device project, the final step
for IoT development is to develop the device firmware and download
it into the real IoT hardware device. In practice, IoT developers first
compile the whole device project by compiler tools [6, 16, 37] and
obtain the generated device firmware. Then they utilize device
programmers (e.g., ST-LINK [39], JTAG [24]) to burn the generated
firmware into real device hardware.

As described in Step 3, device hardware is not necessary in our
testing. So in this step, we compile the IoT SDK with elaborately
constructed scripts to generate device-cloud interaction simulators.
After that we directly execute these simulators to interact with IoT
cloud instead of burning them into real devices. Furthermore, since
there are various device options, each of which would be used to
build a unique solution, we have to compile and generate simulators
more than one time to build different insecure IoT solutions with
those vulnerable device options presented in Section 3.2.

Through the four steps, we build multiple insecure IoT solutions,
and eventually obtain the simulators simulated as IoT devices that
can interact with IoT clouds. Specially, insecure IoT solutions are
built only by introducing vulnerable device options in Step 2. This
is because the IoT developers are unlikely to make mistakes in Step
1, Step 3 and Step 4 as long as they have basic IoT development
experience. And even though vulnerabilities are introduced in the
three steps, such as memory leakage and insecure pointer usage,

most of them are code defects so that they can rarely affect the
security of device-cloud interaction and cannot be checked by IoT
cloud as well since the cloud usually cannot learn about the detailed
device code implementation for privacy issues.

3.4 Testing Security Regulations in IoT Clouds

With multiple insecure IoT solutions, we finally check whether an
IoT cloud regulates the customized solution security. To be more
specific, we collect the prompts on IoT cloud platform and the cloud
responses through SDK IogsT. Hence, if an IoT cloud accepts the
insecure solutions successfully without any prompts or warnings in
output log, we consider that it does not implement comprehensive
and strict regulations on the device-cloud interaction security of
IoT solutions.

To further illustrate the serious consequences caused by IoT
clouds’ failure to check the insecure solutions during IoT develop-
ment, we list some potential real-world attacks on the developed
IoT devices with these solutions.

e Device impersonation. If an IoT device is developed with
a vulnerable device identifier, the attacker will be able to ob-
tain its identifier by brute force, guessing attacks or through
non-unique identifiers on other devices. For example, some
devices are configured with the MAC address as their device
identifier, which contains a vendor specific field and only
leaves small search space. After that, it is possible for the at-
tacker to obtain the victim device identifier by enumerating
them. Then since most IoT clouds authenticate the device
identity simply by a credential calculated with the device
identifier, the attacker is able to calculate the authentication
credential and impersonate as the victim device to report
forged data. The authentication credential calculation algo-
rithms are usually public on the development documents or
can be revealed through the SDK source code or firmware
reverse engineering.

Privacy leakage. IoT devices developed with vulnerable

data transmission will suffer from MITM attacks. Both plain-

text channels and encryption channels with obsolete TLS

protocols can be cracked (e.g., POODLE [55], DROWN [46]).

As a result, the attacker is able to obtain user and device

data transmitted in such vulnerable channels. Some data,

e.g., device status, can be used to infer the device owner’s

daily routine. For instance, the door open and then close at

morning may indicate the owner leaves her house.

e Device Hijacking. IoT devices with vulnerable anti-replay
schemes are likely to be hijacked by attackers through re-
play attacks. If an attacker could learn the corresponding
operation of one message, such as observing traffics and the
device status at the same time, he would be able to obtain the
command messages sent from cloud, neither plaintext nor en-
crypted in application layer, and then replay it to the device,
forcing the device to parse the messages and execute same
operations. For instance, the attacker could observe when
his neighbor’s door is open and capture the corresponding
transmitted messages at the same time. When there is no

The IoT SDKs usually output the responses as debug log information and if not,
we modify the IoT SDK source code to dump the cloud responses as log information.

person in neighbor’s house, he could replay the messages
and open the door at will.

4 EXPERIMENTAL RESULTS

In this section, we reported our experimental results. Our experi-
ments were performed against eight popular IoT clouds. For each
clouds, we registered as its user and obtained corresponding IoT
SDK and development documents. Then we customized the IoT
development to build multiple insecure solutions with allowed vul-
nerable device options, and tested whether those solutions could be
accepted by clouds. In the following, we detailed our experimental
setup and the testing results.

4.1 Experimental Setup

4.1.1 Testing Targets. We launched our testing on eight popular
IoT clouds involving seven well-known companies, i.e., Alibaba [3],
Amazon [7], Baidu [11], Google [17], Huawei [22], Microsoft [10], and
Tencent [33, 35] in United States and China. All these clouds provide
corresponding IoT SDKs for developers openly. Note that although
some SDKs may be developed by more than one programming
language (i.e., the cloud may release C, C++, C#, Java, Python, or
JavaScript versions) to meet different IoT development needs, ev-
ery SDK had a C language version. This may be because most IoT
devices utilize low-level C language for flexible hardware manage-
ment, due to its good portability, high efficiency and little storage
requirements. Hence, our testing utilized the C version of those IoT
SDKs.

4.1.2 Testing Environment. We registered as an IoT developer on
every cloud, obtaining both the development references and the
description documents to learn the features of each cloud. Further-
more, to execute practical testing against the eight IoT clouds, we
simulated the real IoT devices by compiling IoT SDKs with CMake
(version 3.16.3), Make (version 4.2.1), GCC (version 9.3.0), and exe-
cuting the simulators on a laptop with Intel Core i7 1.80 GHz and
16G RAM and the Ubuntu 20.04.01 system.

4.1.3 Ethical Considerations. We carefully designed our experi-
ments to avoid ethical problems. We only performed our tests in
our own accounts on IoT clouds, meaning that we could only ob-
tain privacy information or exploit flawed implementations in our
tested environment without affecting other users. Moreover, the
messages transmitted between simulated devices and an IoT cloud
in our experiments were so few that extra overload for the cloud
server could be ignored.

4.2 Results

Table 1 lists our testing results for eight popular IoT clouds. Column
Accepted Solutions shows the number of insecure solutions gen-
erated with different strategies were accepted by the IoT cloud for
each type of customized device options, and Column Results lists
the security of cloud regulations on IoT solutions during develop-
ment. The results demonstrated all the eight IoT clouds did not
implement a strict and comprehensive security regulation
on customized IoT solutions. Specifically, for each IoT cloud, we
successfully built all the insecure IoT solutions with vulnerable de-
vice options generated by seven strategies described in Section 3.2.

Table 1: Experimental results for eight IoT clouds

10T Clouds IoTSDKs | Accepted Results
Solutions | VDI | VDT | VAC
Aliyun [3] 3.2.0[4] 34242 ® ®
AWS [7] 202103.00 [8] 2+0+2 ® ®
Azure [10] LTS_01_2021 [9] 2+1+2 ® ® ®
Baidu [11] 1.1.9[12] 2+2+1 ® @ ®
GoogleCloud [17] 1.0.3[18] 2+0+0 ®

Huawei [22] 0.9.0 [21] 2+2+2 ® @ ®

QcloudE [33] 3.1.7[34] 3+2+2 ® ® ®

QcloudH [35] 3.2.3[36] 3+2+2 ® ® ®

VDI: Vulnerable Device Identifiers; VDT: Vulnerable Data
Transmission; VAC: Vulnerable Anti-replay Consideration
®: The IoT cloud accepted insecure solutions with this type of
vulnerable device options.

: The 10T cloud forbade all the insecure solutions with this
type of vulnerable device options.

By using these solutions to test, we were able to find all the clouds
did not restrict the use of vulnerable device identifiers, two IoT
clouds, i.e., AWS, GoogleCloud, forbade vulnerable data transmis-
sions and only GoogleCloud could discover the message replays. In
the following, we discuss each type of insecure solutions generating
and testing.

4.2.1 Vulnerable Device Identifiers. We configured vulnerable de-
vice identifiers with three strategies and built insecure IoT solutions
to test whether an IoT cloud would regulate device identifiers in
length, randomness, and uniqueness. First, we generated an array
of insecure device identifiers with the length from 1 to 15, and
configured them to the clouds. We found all the eight IoT clouds
accepted IoT solutions with such identifiers. Specifically, four IoT
clouds, i.e., AWS, Huawei, QcloudE and QcloudH, allowed even one-
byte device identifiers, while three clouds, Azure, Baidu, GoogleCloud,
required the device identifiers to be at least three bytes, and Aliyun
required at least four bytes. Obviously, such short device identifiers
are vulnerable to brute force attacks.

Next, we configured IoT solutions with a series of consecutive
device identifiers, and found all the eight clouds did not check
and recognize this type of identifiers as vulnerable. Thus, if an IoT
developer uses consecutive strings (e.g., serial numbers) as device
identifiers for his devices, the attacker will easily guess other device
identifiers with a known one (e.g., obtained by compromising a
device), and could further perform attacks such as device imper-
sonation.

Additionally, we also built insecure IoT solutions with non-
unique device identifiers and observed that three IoT clouds (i.e.,
Aliyun, QcloudE, and QcloudH) allowed multiple IoT devices to share
one device identifier. In particular, these clouds supported a dy-
namic registration mechanism, in which devices of same model
(e.g., devices with shared properties) are configured with the same
identifier. When connecting to the platform, an IoT device sends
the identifier to the cloud and the cloud will return extra random
tokens for further identification. This is also very dangerous: since
the used identifiers are non-unique, the attacker can utilize the

identifier of one device to impersonate others. And if one of the
devices is compromised, all other devices could be threatened.

4.2.2 Vulnerable Data Transmission. To generate vulnerable data
transmission options and build insecure solutions, we first collected
the application protocols supported by the IoT clouds. Among the
eight clouds, MQTT was the most commonly used protocol, sup-
ported by all eight clouds. HTTP was supported by seven cloud
platforms, except Huawei. Four clouds, i.e., Aliyun, Baidu, Huawei,
QcloudH, supported CoAP. Besides, Azure supported the AMQP [2]
protocol, which provides flow controlled, message-oriented com-
munication with message-delivery guarantees and requires more
resources than MQTT. Huawei supported the LwM2M [31] protocol
which is also designed for M2M and IoT device management and
built on top of CoAP. To achieve secure communication, all the
above five protocols should be implemented with TLS/DTLS pro-
tection. Since the implementation procedures of these application
protocols were similar, we only took MQTT, the most common
one, to check whether IoT clouds accepted the vulnerable data
transmission solutions.

For plaintext data transmission, we found five IoT clouds, i.e.,
Aliyun, Baidu, Huawei, QcloudE, QcloudH, accepted the data trans-
mission without TLS protection. Hence the attacker could launch
MITM attacks to obtain privacy information such as user commands
and device statuses.

As for obsolete TLS protocols, we implemented and config-
ured the data transmission with SSLv3, TLSv1.0 and TLSv1.1, sepa-
rately. The testing results showed that two IoT clouds, i.e., AWS and
GoogleCloud, only accepted secure TLS protocols (i.e., TLSv1.2). And
the other six clouds, i.e., Aliyun, Azure, Baidu, Huawei, QcloudE and
QcloudH, did not check or make constraints on the TLS versions.
Specially, although Azure described in its documents that the IoT
developers should choose the newest version of TLS protocol, it still
accepted SSL and TLSv1.0 connection and did not check this vul-
nerable data transmission option. This indicated that Azure failed to
implement what it described in development documents, providing
chances for attacks.

4.2.3 Vulnerable Anti-replay Consideration. We configured vulner-
able anti-replay options by two strategies and built the insecure IoT
solutions to explore the IoT cloud anti-replay regulations: whether
an IoT cloud forces developers to deploy anti-replay schemes and
whether the cloud carefully checks the anti-replay values config-
ured by IoT developers. Specifically, we found four IoT clouds, i.e.,
AWS, Azure, QcloudE and QcloudH, did not support any anti-replay
schemes at all so that the IoT developers were unable to config-
ure any anti-replay options. We consider the four clouds lacked
anti-replay consideration on the IoT solutions. For the other four
I0T clouds, we separately configured the anti-replay options. Aliyun
and Baidu both provided a timestamp field for anti-replay consid-
eration but this field could be ignored. And Huawei also provided
a timestamp field and an extra signType field which can be con-
figured to ‘0’ to invalidate the timestamp. For the three clouds,
we first omitted or invalidate the timestamp fields to check if the
two clouds accepted IoT solutions without anti-replay schemes.
Then we configured their timestamp fields with improper times-
tamps generated more than 30 minutes ago to check whether the
clouds accepted vulnerable anti-replay schemes. As for Googlecloud,

it leveraged Json Web Token (JWT) [23], which was generated with
timestamp, as the anti-replay scheme, and could not be ignored.
Hence, we considered GoogleCloud forced the developers to adopt
the anti-replay scheme. Then, we similarly generated JWT values
with improper timestamps and configured them in IoT solutions to
check if GoogleCloud accepted such insecure configurations.

we found The results showed that only GoogleCloud checked the
anti-replay options strictly. It only accepted IoT solutions that were
securely configured with proper JWT for anti-replay consideration,
in which the JWT value was just valid in a certain period of time
and was checked by GoogleCloud every connection. As for Aliyun,
Baidu and Huawei, although they provided the anti-replay schemes
for developers, such scheme options could be ignored and still ac-
cepted by the clouds. Worse still, Aliyun and Huawei even accepted
the solutions with timestamp anti-replay values generated more
than 30 minutes. That indicated although developers enabled but
improperly configured the anti-replay schemes in IoT solutions,
Aliyun and Huawei still accepted such vulnerable solutions. We fur-
ther checked the expiration time through documents of the two IoT
clouds, and found Huawei allowed timestamp value within an hour,
while Aliyun did not checked the validity of timestamp at all. Thus,
such restrictions could easily lead to replay attacks.

5 CONCLUSION

This paper reports a practical study on the cloud regulations on the
security of customized IoT solutions. We described three security-
critical device options and acted as IoT developers without enough
security knowledge to build insecure IoT solutions with multiple
vulnerable device options. Specially, instead of implementing var-
ious complex hardware functions, we leveraged the IoT SDKs to
simulate as real IoT devices. In order to learn why the vulnerabilities
could be introduced to real IoT devices, we performed multiple tests
on eight mainstream IoT clouds to check whether a specific IoT
cloud regulated the IoT solutions customized by IoT developers. The
results showed that most of them accepted these insecure solutions
without any reminder or warning to developers, which reveal the
prevalence of incomprehensive cloud regulations on customized
IoT solutions in practice. And our study can assist in further under-
standing of hazards existing in IoT development and even the real
device security.

REFERENCES

[1] Accessed 2021. 2020 Unit 42 IoT Threat Report. https://unit42.paloaltonetworks
.com/iot-threat-report-2020/.
[2] Accessed 2021. Advanced Message Queuing Protocol. https://en.wikipedia.org
/wiki/Advanced_Message_Queuing_Protocol.
[3] Accessed 2021. Aliyun IoT Platform. https://www.alibabacloud.com/help/prod
uct/30520.htm?spm=a3c0i.20928573.4982687050.1.6df910c11MalLc].
4] Accessed 2021. Aliyun Linkkit SDK. https://github.com/aliyun/iotkit-embedded.
] Accessed 2021. Analysis of smartwatches for children. https://filforbrukerradet.
no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf.
[6] Accessed 2021. ARM Keil. https://www.keil.com/.
[7] Accessed 2021. AWS IoT Core. https://aws.amazon.com/iot-core/.
[8] Accessed 2021. AWS IoT Device SDK for Embedded C. https://github.com/aws
/aws-iot-device-sdk-embedded-C.
[9] Accessed 2021. Azure IoT C SDK. https://github.com/Azure/azure-iot-sdk-c.
[10] Accessed 2021. Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot
-hub/.
[11] Accessed 2021. Baidu AI Cloud IoT Core. https://intl.cloud.baidu.com/product/i
ot.html.
[12] Accessed 2021. Baidu AI Cloud IoT Core SDK. https://github.com/baidu/iot-sdk
-c.

https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://www.alibabacloud.com/help/product/30520.htm?spm=a3c0i.20928573.4982687050.1.6df910c11MaLcJ
https://www.alibabacloud.com/help/product/30520.htm?spm=a3c0i.20928573.4982687050.1.6df910c11MaLcJ
https://github.com/aliyun/iotkit-embedded
https://fil.forbrukerradet.no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf
https://www.keil.com/
https://aws.amazon.com/iot-core/
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/Azure/azure-iot-sdk-c
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://intl.cloud.baidu.com/product/iot.html
https://intl.cloud.baidu.com/product/iot.html
https://github.com/baidu/iot-sdk-c
https://github.com/baidu/iot-sdk-c

[21]

[22

[23

[24]
[25]

[26

[30]

(31

[32]
[33]

[34

[35]
[36]

[37

[38]

[39

[40]

(41

[42]

[43]

[44

[45]

[46

Accessed 2021. Cities Exposed in Shodan. https://www.trendmicro.com/vinfo/u
s/security/news/internet- of-things/cities-exposed-in-shodan/.
Accessed 2021. The Cloud exposes your private IP
https://www.srlabs.de/bites/cloud-cameras.

Accessed 2021. CoAP. https://tools.ietf.org/html/rfc7252.

Accessed 2021. GNU Toolchain for Arm processors. https://developer.arm.com/
tools-and-software/open-source-software/developer-tools/gnu-toolchain.
Accessed 2021. Google Cloud IoT Core. https://cloud.google.com/iot-core.
Accessed 2021. Google Cloud IoT Device SDK. https://github.com/GoogleCloud
Platform/iot-device- sdk-embedded-c.

Accessed 2021. Guidelines for the Selection, Configuration, and Use of Transport
Layer Security (TLS) Implementations. https://nvlpubs.nist.gov/nistpubs/Specia
IPublications/NIST.SP.800-52r2.pdf.

Accessed 2021. HTTP. https://en.wikipedia.org/wiki/Hypertext_Transfer_Proto
col.

Accessed 2021. Huawei Cloud IoT Device SDK. https://github.com/huaweicloud
/huaweicloud-iot-device-sdk-c.

Accessed 2021. Huawei Cloud IoT Hub. https://support.huaweicloud.com/ioth
ub/.

Accessed 2021. JSON Web Token (JWT). https://datatracker.ietf.org/doc/html/
rfc7519.

Accessed 2021. JTAG. https://en.wikipedia.org/wiki/JTAG.

Accessed 2021. Local Area Network. https://en.wikipedia.org/wiki/Local_area
_network.

Accessed 2021. MAC addresses: the privacy Achilles’ Heel of the Internet of
Things. https://www.computing.co.uk/news/2433827/mac-addresses-the-priva
cy-achilles- heel-of-the-internet-of-things.

Accessed 2021. McAfee Enterprise ATR Uncovers Vulnerabilities in Globally
Used B. Braun Infusion Pump. https://www.mcafee.com/blogs/enterprise/mc
afee-enterprise-atr/mcafee-enterprise-atr-uncovers-vulnerabilities-in- globall
y-used-b-braun-infusion-pump/#.

Accessed 2021. MQTT. http://mqtt.org/.

Accessed 2021. NSA Eliminating Obsolete Transport Layer Security (TLS).
https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OB
SOLETE_TLS_UOO197443-20.PDF.

Accessed 2021. The OAuth 2.0 Authorization Framework. https://datatracker.ie
tf.org/doc/html/rfc6749.

Accessed 2021. OMA Lightweight M2M. https://en.wikipedia.org/wiki/OMA _
LWM2M.

Accessed 2021. OWASP Cheat Sheet Series. https://cheatsheetseries.owasp.org/.
Accessed 2021. Qcloud IoT Explorer. https://cloud.tencent.com/product/iotexp
lorer.

Accessed 2021. Qcloud IoT Explorer SDK. https://github.com/tencentyun/qclo
ud-iot-explorer-sdk-embedded-c.

Accessed 2021. Qcloud IoT Hub. https://intl.cloud.tencent.com/product/iothub.
Accessed 2021. Qcloud IoT SDK. https://github.com/tencentyun/qcloud-iot-sdk

-embedded-c.

Accessed 2021. RISC-V GNU Compiler Toolchain. https://github.com/riscv-col
lab/riscv-gnu-toolchain.

Accessed 2021. Someone Is Taking Over Insecure Cameras and Spying on Device
Owners. https://www.bleepingcomputer.com/news/security/someone-is-takin
g-over-insecure-cameras-and-spying-on-device-owners/.

Accessed 2021. ST-LINK/V2. https://www.st.com/en/development-tools/st-lin
k-v2.html.

Accessed 2021. Summarizing Known Attacks on Transport Layer Security (TLS)
and Datagram TLS (DTLS). https://datatracker.ietf.org/doc/html/rfc7457.
Accessed 2021. Transport Layer Security. https://en.wikipedia.org/wiki/Transp
ort_Layer_Security.

Zahoor Ahmed Alizai, Noquia Fatima Tareen, and Iqra Jadoon. 2018. Improved
IoT device authentication scheme using device capability and digital signatures.
In 2018 International Conference on Applied and Engineering Mathematics
(ICAEM). [EEE, 1-5.

Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok:
Security evaluation of home-based iot deployments. In 2019 IEEE symposium on
security and privacy (sp). IEEE, 1362-1380.

Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and
Nick Feamster. 2017. Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic. arXiv preprint arXiv:1708.05044 (2017).

Abeer Assiri and Haya Almagwashi. 2018. IoT security and privacy issues. In 2018
1st International Conference on Computer Applications & Information Security
(ICCAIS). IEEE, 1-5.

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J Alex Halderman, Viktor

cameras.

[47

[48

[49

[50

[51

[52

[53

[57

[58

[59

[61

[62

[63

[64

[65

]

]

]

]

Dukhovni, et al. 2016. {DROWN}: Breaking {TLS} Using SSLv2. In 25th
{USENIX} Security Symposium ({USENIX} Security 16). 689-706.
Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,

XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang[,_ and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-

based Fuzzing.. In NDSS.

Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike Dong, Qingchuan Zhao,
Menghan Sun, Zhigiang Lin, Yinqian Zhang, and Kehuan Zhang. 2019. Your
I0Ts Are (Not) Mine: On the Remote Binding Between IoT Devices and Users. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 222-233.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A Large-Scale Analysis of the Security of Embedded Firmwares. In 23rd USENIX
Security Symposium (USENIX Security 14). USENIX Association, San Diego, CA,
95-110. https://www.usenix.org/conference/usenixsecurity14/technical-sessi
ons/presentation/costin

Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise static
detection of common vulnerabilities in firmware. ACM SIGPLAN Notices 53, 2
(2018), 392-404.

Rohit Goyal, Nicola Dragoni, and Angelo Spognardi. 2016. Mind the tracker you
wear: a security analysis of wearable health trackers. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing. 131-136.

Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru
Zhao, and Yuqing Zhang. [n. d.]. Burglars’ IoT Paradise: Understanding and
Mitigating Security Risks of General Messaging Protocols on IoT Clouds. In 2020
IEEE Symposium on Security and Privacy (SP). 838-854.

Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and
Yongdae Kim. 2020. FirmAE: Towards Large-Scale Emulation of IoT Firmware
for Dynamic Analysis. In Annual Computer Security Applications Conference.
733-745.

Sreekanth Malladi, Jim Alves-Foss, and Robert B Heckendorn. 2002. On
preventing replay attacks on security protocols. Technical Report. IDAHO UNIV
MOSCOW DEPT OF COMPUTER SCIENCE.

Bodo Méller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites:
exploiting the SSL 3.0 fallback. Security Advisory 21 (2014), 34-58.

Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn,
Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and Giovanni Vi-
gna. 2021. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices. In 42nd IEEE Symposium on Security and
Privacy 2021.

Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 195-212.

Maha Saadeh, Azzam Sleit, Mohammed Qatawneh, and Wesam Almobaideen.
2016. Authentication techniques for the internet of things: A survey. In 2016
cybersecurity and cyberforensics conference (CCC). IEEE, 28-34.

KB Sarmila and SV Manisekaran. 2019. A study on security considerations in
IoT environment and data protection methodologies for communication in cloud
computing. In 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE, 1-6.

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-automatic detection of authentication bypass
vulnerabilities in binary firmware.. In NDSS.

Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2021.
Open for hire: attack trends and misconfiguration pitfalls of IoT devices. In ACM
Internet Measurement Conference (IMC).

Junia Valente and Alvaro A Cardenas. 2017. Security & privacy in smart toys. In
Proceedings of the 2017 Workshop on Internet of Things Security and Privacy.
19-24.

Xueqiang Wang, Yugiong Sun, Susanta Nanda, and XiaoFeng Wang. 2019. Look-
ing from the mirror: evaluating IoT device security through mobile companion
apps. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1151-
1167.

Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, XiaoFeng Wang, and Yuqing Zhang.
2020. Shattered chain of trust: Understanding security risks in cross-cloud iot
access delegation. In 29th {USENIX} Security Symposium ({USENIX} Security
20). 1183-1200.

Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuging Zhang. 2019. Discovering and understanding the security hazards in the in-
teractions between IoT devices, mobile apps, and clouds on smart home platforms.
In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1133-1150.

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/cities-exposed-in-shodan/
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/cities-exposed-in-shodan/
https://tools.ietf.org/html/rfc7252
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain
https://cloud.google.com/iot-core
https://github.com/GoogleCloudPlatform/iot-device-sdk-embedded-c
https://github.com/GoogleCloudPlatform/iot-device-sdk-embedded-c
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://support.huaweicloud.com/iothub/
https://support.huaweicloud.com/iothub/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://en.wikipedia.org/wiki/JTAG
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Local_area_network
https://www.computing.co.uk/news/2433827/mac-addresses-the-privacy-achilles-heel-of-the-internet-of-things
https://www.computing.co.uk/news/2433827/mac-addresses-the-privacy-achilles-heel-of-the-internet-of-things
https://www.mcafee.com/blogs/enterprise/mcafee-enterprise-atr/mcafee-enterprise-atr-uncovers-vulnerabilities-in-globally-used-b-braun-infusion-pump/#
https://www.mcafee.com/blogs/enterprise/mcafee-enterprise-atr/mcafee-enterprise-atr-uncovers-vulnerabilities-in-globally-used-b-braun-infusion-pump/#
https://www.mcafee.com/blogs/enterprise/mcafee-enterprise-atr/mcafee-enterprise-atr-uncovers-vulnerabilities-in-globally-used-b-braun-infusion-pump/#
http://mqtt.org/
https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://en.wikipedia.org/wiki/OMA_LWM2M
https://en.wikipedia.org/wiki/OMA_LWM2M
https://cheatsheetseries.owasp.org/
https://cloud.tencent.com/product/iotexplorer
https://cloud.tencent.com/product/iotexplorer
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://intl.cloud.tencent.com/product/iothub
https://github.com/tencentyun/qcloud-iot-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-sdk-embedded-c
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://www.bleepingcomputer.com/news/security/someone-is-taking-over-insecure-cameras-and-spying-on-device-owners/
https://www.bleepingcomputer.com/news/security/someone-is-taking-over-insecure-cameras-and-spying-on-device-owners/
https://www.st.com/en/development-tools/st-link-v2.html
https://www.st.com/en/development-tools/st-link-v2.html
https://datatracker.ietf.org/doc/html/rfc7457
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin

	Abstract
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Security Analysis Methods for IoT Ecosystem

	3 Methodology
	3.1 Customized Device Options
	3.2 Generating Vulnerable Device Options
	3.3 Building Insecure IoT Solutions
	3.4 Testing Security Regulations in IoT Clouds

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

