
Medusa Attack: Exploring Security Hazards of In-App QR Code Scanning

Xing Han1,2,∗, Yuheng Zhang1,2,∗, Xue Zhang1,2, Zeyuan Chen3, Mingzhe Wang4

Yiwei Zhang5, Siqi Ma6, Yu Yu2,7, Elisa Bertino5, Juanru Li2,7

1University of Electronic Science and Technology of China, 2Shanghai Qi Zhi Institute,
3G.O.S.S.I.P, 4Xidian University, 5Purdue University,

6The University of New South Wales, 7Shanghai Jiao Tong University

Abstract
Smartphone users are eliminating traditional QR codes as
many apps have integrated QR code scanning as a built-in
functionality. With the support of embedded QR code scan-
ning components, apps can read QR codes and immediately
execute relevant activities, such as boarding a flight. Han-
dling QR codes in such an automated manner is obviously
user-friendly. However, this automation also creates an op-
portunity for attackers to exploit apps through malicious QR
codes if the apps fail to properly check these codes.

In this paper, we systematize and contextualize attacks on
mobile apps that use built-in QR code readers. We label these
as MEDUSA attacks, which allow attackers to remotely ex-
ploit the in-app QR code scanning of a mobile app. Through
a MEDUSA attack, remote attackers can invoke a specific type
of app functions – Remotely Accessible Handlers (RAHs),
and perform tasks such as sending authentication tokens or
making a payment. We conducted an empirical study on 800
very popular Android and iOS apps with billions of users
in the two largest mobile ecosystems, the US and mainland
China mobile markets, to investigate the prevalence and sever-
ity of MEDUSA attack related security vulnerabilities. Based
on our proposed vulnerability detection technique, we thor-
oughly examined the target apps and discovered that a wide
range of them are affected. Among the 377/800 apps with
in-app QR code scanning functionality, we found 123 apps
containing 2,872 custom RAHs that were vulnerable to the
MEDUSA attack. By constructing proof-of-concept exploits
to test the severity, we confirmed 46 apps with critical or
high-severity vulnerabilities, which allows attackers to access
sensitive local resources or remotely modify the user data.

1 Introduction

As smartphones have become more and more ubiquitous,
Quick Response (QR) codes are widely used for convenience
and efficiency. According to a study by Juniper Research [36],

*The first two authors contributed equally to this work

over one billion smartphones were embedded with QR code
scanning in 2022. Scanning a QR code is often the fastest
and most convenient way for smartphone users to obtain or
display text information in a contactless manner. Since their
initial use for opening URLs to display vaccine certificates
during the COVID-19 pandemic, manufacturers have started
utilizing QR code scanning for multiple purposes. To further
facilitate users, a new trend in QR code applications, in-app
QR code scanning, has emerged. When a mobile app needs
to acquire information from a QR code, instead of switch-
ing to a third-party QR code scanner app (e.g., the system
camera app), the app directly uses a built-in QR code reader
component to extract the encoded data. More importantly,
once the encoded data is extracted, the app can automatically
execute a series of functions (e.g., redeem a coupon and use it
to make a payment) without any additional interactions, and
thus provide a seamless user experience.

While in-app QR code scanning significantly facilitates
users in many application scenarios, it poses additional se-
curity threats to mobile apps. QR codes have been previ-
ously suggested as an attack vector for downloading malware,
visiting some phishing websites [41], or injecting malicious
code into vulnerable web components [54]. Corresponding
effective defenses have been proposed based on filtering. We
observe that past works have not largely addressed the over-
all ecosystem of in-app QR code scanning, focusing more
generically on web-to-app attacks instead. In this work, we
spotlight the systematic vulnerabilities of in-app QR code
scanning (i.e., mobile apps that use built-in QR readers other
than the system’s default one) and detail how the vector is
analyzed. Specifically, we characterize such threats and attack
vector against in-app QR code scanning and investigate how
flaws of built-in QR code readers can be exploited to attack
their host apps. We present the MEDUSA attack, an attack
demonstrating that built-in QR code readers can be easily
hijacked to execute native functions of the host app. In a typi-
cal MEDUSA attack, a carefully crafted QR code drives the
built-in QR code reader to trigger web access with tampered
parameters; then the created in-app browser component is



hijacked to communicate with an attacker-controlled remote
server. Finally, the attacker leverages a class of app functions
designed to work with remote servers, referred to as Remotely
Accessible Handlers (RAHs) in this paper, to execute the
attack. In particular, the MEDUSA attack uses the RAHs cus-
tomized by app developers (regarded as custom RAHs), and
registers to the in-app browser component afterward, as those
RAHs are more likely to perform privileged operations, such
as sending sensitive data to the server or executing unexpected
functionalities in the victim app.

The MEDUSA attack is different from many web-to-app
or app-to-app attacks [8, 11, 22, 23, 29, 30, 47, 48, 54]. On
the one hand, it aims to tamper with QR code scanning, a
frequently used in-app operation for input data collection.
Thus, it does not rely on any other third-party app to input
the attack payloads (e.g., a crafted URI in an email app to be
clicked, or an Intent sent by a malicious app). On the other
hand, unlike those injection attacks that insert well-crafted
malicious code (via different input sources) into legitimate
web pages, our MEDUSA attack leverages the built-in QR code
reader to launch a hijacked in-app browsing. Once the in-app
browsing is controlled, the attack reuses the custom RAHs
present in the app. In this scenario, even though Android
and iOS apps (especially the popular ones) have protections
against most attacks from the external (e.g., W2AI attacks [8]),
their built-in QR code readers become the prevalent internal
attack surface. Even worse, a MEDUSA attack often affects
both Android and iOS apps because they share similar in-app
QR code scanning mechanisms, and thus the flaws. An exploit
can thus be reused to attack Android and iOS versions of the
same app with minor modifications.

To systematically investigate how widespread the MEDUSA
attack related security vulnerabilities are in Android and iOS
mobile apps, we have designed a four-stage vulnerability de-
tection approach. First of all, to enhance detection efficiency,
we statically scan the code of tested apps to select those with
custom RAHs as candidates. Next, we collect the official QR
codes of the candidates as test cases, examining whether the
built-in QR code readers use an in-app browser component
(i.e., WebView) to access web content. If a WebView is used,
we further analyze which custom RAHs are registered to this
object. Then, we employ two additionally generated QR codes
to identify insecure QR code readers. Finally, through a mali-
cious QR code, we test whether an app can be hijacked and
whether its custom RAHs are invoked to confirm the security
hazards.

We applied our detection to 800 most popular Android and
iOS apps in the US and mainland China by October 2022
to assess the impact of the MEDUSA attack. We found that
protection against the QR code input was relatively weak.
Built-in QR code readers were widely used but they often
ignored the risk that the QR code could be a malicious input,
and just deployed simple and ineffective sanitization. Among
the 800 apps, nearly half of them (377, 47.1%) integrated built-

in QR code readers, and 286 apps allowed the QR code readers
to launch the in-app browser component. Nonetheless, 115
apps did not apply any defense against the scanned QR codes
(and the following accessed web contents), hence allowing
custom RAHs to be invoked arbitrarily. What is worse, even
those apps that checked their input QR codes, some could
still be easily circumvented; in our test, eight apps with more
than 10 million users contained QR code readers with ill-
implemented sanitization and thus were still vulnerable to
the MEDUSA attack. Our analysis results show that weak
protection against QR codes represents a serious vulnerability,
that can be exploited by attacks, like the MEDUSA attack,
affecting billions of mobile users.
Contributions. We make the following contributions:

• New Vulnerabilities in QR Code Scanning. We unveil
new security risks in built-in QR code readers and de-
tail the MEDUSA attack that exploits (custom) RAHs to
remotely attack mobile apps. We also discuss the root
cause of the MEDUSA attack and why defenses are not
easy to deploy.

• Effective Analysis Techniques. To help detect mobile
apps that are vulnerable to the MEDUSA attack at a large
scale, we developed a series of novel analysis techniques
to identify risky implementations in an automatic man-
ner. Our approach to automatic vulnerability detection
is organized into two independent tasks: discovering
potentially exploitable apps and identifying insecurely
used QR code readers. The results are then combined to
determine whether an app is vulnerable.

• Cross-platform Investigation. Unlike many previous
works that only analyzed Android apps, we extensively
analyzed both Android and iOS apps and provided a
meaningful snapshot of the ecosystem. We analyzed the
top-200 popular Android/iOS apps of the US app mar-
ket (each from Google Play and Apple AppStore, respec-
tively) and the top-200 Android/iOS apps of the main-
land China app market (each from Tencent MyAPP and
Apple AppStore, respectively). Our investigation shows
that there is a large number of apps that could be af-
fected by the MEDUSA attack in both Android and iOS
ecosystems.

Ethical Considerations. The MEDUSA attack related experi-
ments were conducted using the app accounts of the authors,
hence did not affect other users. All the attacks were tested
on our own devices with our test accounts, which did not
harm any of the victim app servers. We legally downloaded
all tested apps using smartphones without any crawlers.

The goal of using code reverse engineering as part of our
app analysis is not to replicate or modify legitimate apps, but
to examine their implementation and find security flaws. Af-
ter finding vulnerable apps, we informed the corresponding



developers as well as the organizations responsible for main-
taining vulnerability databases. In the meantime, we provided
solutions to help them fix the vulnerabilities we have detected.
Availability. To ensure the reproducibility of our work and to
help the community evaluate future attacks and defenses, we
released our datasets and analysis tools at https://medu
sa.code-analysis.org.

2 Background

2.1 QR Code
The Quick Response (QR) code is a barcode that appears as a
square pattern and stores encoded data. QR codes were first
created in 1994 by Denso Wave, a subsidiary of the Japanese
firm Toyota Group. With the extensive use of smart Android
and iOS phones, QR codes are today widely posted both
online and offline. They are usually used to store ASCII text
but can also store binary data. The encoding schemes of
QR codes are regulated by ISO/IEC 18004:2015 [28]. For a
QR code (Version 40), its maximum data encoding capacity
is 23,648 bits [25]. This makes it possible to generate QR
codes containing a rich amount of information. Moreover,
novel compression technology including compressed data
direct computing [56] can allow QR Code to contain more
information. Actually, the ISO standard only defines how to
encode the data but does not specify restrictions on the kind
of encoded content. That is, a QR code could encode a very
complex URL, an X.509 certificate, a JSON-formatted text
containing a user name and a phone number, or a base64-
encoded binary data of an image.

For a human user, a QR code is incomprehensible, and thus
a QR code reader (often a mobile app) is necessary to scan
and parse it. Both Android and iOS provide QR code reader
as a system component (i.e., a system app). Nonetheless,
those QR code readers only decode the QR code but do not
“understand” the decoded data. Oftentimes, the decoded data
is sent to another app for handling. For instance, if the decoded
data is a URL, the QR code reader would launch the system
default web browser to visit it (with a prompt to ask for the
user consent).

2.2 In-App QR Code Scanning
Even though most smartphones provide QR code readers as
pre-installed system apps, more and more apps today integrate
a QR code reader as a built-in component to handle their own
QR codes. Specifically, a built-in QR code reader consists of
three parts (see Figure 1): a QR code scanner to scan and
decode QR codes; a QR code parser to parse the decoded data
(often with proprietary formats); and a QR code executor to
automatically execute certain activities driven by the content
of the decoded data. Take WhatsApp [53] as an example. When
a user tries to log into her WhatsApp account on a desktop

browser, the website of WhatsApp will show a QR code instead
of asking the user to provide the username and password.
The user would then utilize her (already logged in) WhatsApp
app to scan the QR code, and then the authentication on the
desktop browser is automatically executed. In this scenario,
the built-in QR code reader of WhatsApp first decodes the QR
code using its QR code scanner (as other third-party QR code
reader apps do). It then utilizes its QR code parser to handle
the (base64-encoded binary) data and send it to the QR code
executor. According to what the data content indicates, the QR
code executor constructs and issues a login request with the
user credentials to the WhatsApp server - in essence providing
a password-less authentication. Finally, the QR code executor
would display information about the operation - in this case
the login result instead of the decoded text of the QR code.

QR code

Built-in QR Code Reader Functions

QR code
Scanner

QR code
Parser

QR code
Executor

Text
Structured

Data

Figure 1: Components of a built-in QR code reader

Although apps (and their built-in QR code readers) fol-
low the ISO standard to decode QR codes, they handle the
decoded data in very diverse ways. It is the content of the de-
coded data that determines how the QR code executor would
work. The use of a built-in QR code reader has two important
advantages: (1) Seamless user experience: users do not need
to switch to a third-party app to scan QR codes. The app can
directly execute activities such as checking into a location or
connecting to a password-protected wireless network without
requiring any additional user interaction once the specific QR
code is scanned. (2) Secure scanning: the QR code readers
often adopt extra content validation to ensure that the app
would not access and handle an illegal QR code.

2.3 Remotely Accessible Handlers
To facilitate interactions with their app servers, many apps
explicitly expose some functions that can be invoked remotely.
In this paper, we refer to such a function as a Remotely Ac-
cessible Handler (RAH). A RAH is often a native function,
written in Java/Objective-C/C/C++, of the app. It first regis-
ters a RAH interface as a web API and then remote servers
can invoke it (with some parameters) to perform further oper-
ations. Therefore, a RAH builds a web-app bridge for appli-
cations/scripts running on remote web servers to access the
native app functions and resources on the mobile phone.

In Android and iOS apps, RAHs can be classified as
standard and custom ones. Standard RAHs are gener-
ally web APIs [26] implemented by the official in-app
web browser component (e.g., Android WebView [5] or iOS
WKWebView [27]). For instance, the Credential Management

https://medusa.code-analysis.org
https://medusa.code-analysis.org


API allows a website to store credentials (e.g., private keys)
on the client side or retrieve them from the client. Addition-
ally, app developers also develop custom RAHs to implement
app-specific functions (e.g., take a photo and upload it). To en-
able a custom RAH, an app first explicitly registers the RAH
interface to the in-app web browser component1. When the
app accesses web contents, it first creates a WebView object
and then uses it to open a certain URL. If the custom RAHs
are registered to this WebView object, then the corresponding
remote server can access the RAHs through the interfaces. In
the following, we detail how custom RAHs are developed and
used in Android and iOS apps, respectively.

2.3.1 Custom RAHs in Android Apps

There are generally two types of custom RAHs in Android
apps:
1) RAHa Type-1 (RaT-1). This type of RAH for Android
relies on addJavascriptInterface to register itself as a
Java object into the JavaScript runtime in the Android
WebView. The JavaScript executing in the WebView can then
access the registered RAH object, invoking its methods with
@JavascriptInterface annotation since Android 4.2, or all
methods before Android 4.2.
2) RAHa Type-2 (RaT-2). This type of RAH is implemented
as an event handler for the Android WebView. By overriding
the methods of WebViewClient, a member of the WebView
object, an app registers event handlers as RaT-2 RAHs that
process various events generated by WebView.

2.3.2 Custom RAHs in iOS Apps

When using WKWebView, there are several ways to register and
use custom RAHs.
1) RAHi Type-1 (RiT-1). This type of RAH relies on
WKScriptMessageHandler, an official method provided by the
WebKit framework as the web-app bridge between an app and
the WKWebView; by using WKScriptMessageHandler, a mes-
sage can be sent from the WKWebView via the WebKit frame-
work to the app and handled by the native functions of the
app.
2) RAHi Type-2 (RiT-2). WebViewJavascriptBridge [51], the
most popular third-party library to create a bridge between
an iOS app and WKWebView, has been used by a range of com-
panies and projects such as Facebook Messenger. A RiT-2 can
use the WebViewJavascriptBridge to create web-app bridge ob-
jects in both the app and WebView Native methods can be
registered as handlers and be invoked from the WKWebView via
the bridge object.

1In this paper we focus on WebView object, the most widely used in-app
web browser component. We mainly focus on Android WebView and iOS
WKWebView. Note that the UIWebView in iOS has been deprecated and is
not recommended by Apple, and from the end of 2020, AppStore no longer
accepts app updates containing UIWebView [49]. Thus in this paper we only
discuss WKWebView.

3) RAHi Type-3 (RiT-3). DSBridge is another well-known
third-party library to invoke native methods from the
WKWebView. By utilizing DSBridge, API objects with na-
tive methods can be added to DWKWebView, the wrapper for
WkWebView, and these native methods can be invoked from the
WebView by including the JavaScript library of DSBridge.

3 Medusa Attack

3.1 Attack Overview

Briefly, a MEDUSA attack starts when an app unintentionally
scans a (malicious) QR code by using its built-in QR code
reader. Then the app is tricked into executing some unex-
pected functions (e.g., sending credential tokens to a remote
server without the permit of the user). Underneath this proce-
dure, it is the QR code executor that creates a WebView object
with some RAHs registered. The WebView object is originally
created to help fulfill essential app-to-web communication
(e.g., implementing user authentication), and its RAHs are
expected to be invoked only by trusted remote servers. How-
ever, a meticulously crafted QR code is able to hijack the
QR code executor, creating a WebView object with tampered
parameters. This leads the WebView object to access some
attacker-controlled resources, and the attacker can therefore
remotely invoke the RAHs belonging to the WebView. In this
way, a MEDUSA attack is executed. In addition, a large num-
ber of mobile apps allow their QR code executor to execute
after the QR code scanning without any user interaction. Al-
though this design is user-friendly, once the QR code executor
is hijacked, the MEDUSA attack can be executed stealthily
and automatically.

3.2 Attack Model

Attack Vector. The MEDUSA attack is initialized by a QR
code. The attack vector is the built-in QR code reader of
a mobile (either Android or iOS) app. The QR code can
be dynamically generated or prepared beforehand. Once the
victim app scans the malicious QR code, the door to the
MEDUSA attack is opened.

In order to prepare the malicious QR code, the attacker first
identifies the apps containing the (vulnerable) built-in QR
code reader, and then prepares the corresponding malicious
QR codes beforehand, waiting for the victim to scan them in
a certain application scenario. A specific application scenario
for QR codes is offline usage: many QR codes are published
publicly by vendors for various purposes (e.g., advertising,
making payments). Such publicly available QR codes can
easily be tampered. Also, unlike text-based information (e.g.,
a URL) that can be more easily recognized by humans, QR
codes are generally unreadable and thus it is unlikely a human
can distinguish a malicious QR code from a benign one.



Attack Constraints. The MEDUSA attack only assumes that
the victim app has a built-in QR code reader and some RAHs,
and the app is able to access the Internet. Apart from this,
no special permission is required for the app. Note that the
MEDUSA attack neither assumes that the target app contains
any malicious third-party libraries nor needs to install any
malicious apps or certificates.

The MEDUSA attack assumes that the victim apps are well
protected by the mobile OS, and the integrity of the mobile
device (OS and the internal storage data) is guaranteed. The
MEDUSA attack also assumes that typical code and network-
level defenses have been deployed. For instance, network
traffic is protected by HTTPS. The only capability the attacker
needs is to obtain the executable code of the target apps and
employ reverse engineering to understand the logic of QR
code scanning and RAH invocation. Obtaining the executable
code is very easy despite the protections mentioned earlier.

3.3 Attack Steps

To construct a MEDUSA attack three steps are required in
general: 1) triggering the QR code executor with a (malicious)
QR code to launch web access (i.e., create a WebView object);
2) tampering with the parameters of WebView initialization
using the crafted data in the QR code; and 3) hijacking web
access to attacker-controlled resources and invoking RAHs.
In the following, we use the SHAREit [42] file transfer app
with more than 2 billion users worldwide (SHAREit for short)
as a concrete example to illustrate each step, and discuss the
technical challenges unique to the MEDUSA attack.

3.3.1 Web Access Triggering

The most standard approach used by Android and iOS apps
to execute in-app web browsing is to create a WebView ob-
ject, and leverage the object as an in-app browser component
to access the web resources. Hence in this paper, we focus
on the case where an app uses WebView instead of a third-
party browser to load web contents. Take the SHAREit as an
example; it utilizes the QR code to help users share files
online and offline. If a user wants to upload files from her
mobile device to her PC, she can first use the PC browser to
access http://web.ushareit.com/ and obtain a QR code on
the web page, and then scan the QR code2. After that, the
built-in QR code reader of SHAREit extracts the essential data
(in this case the cid value), and then accesses the server of
SHAREit, sends the files to the receiver designated by the cid
value. This procedure is also a common practice for many
apps: extracting data from the QR code, launching web access
with the obtained data as parameters, and finally establishing
communications between an app and its remote (web) server.

2The QR code is in the form of http://ushareit.com/device?t=2&
cid=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

3.3.2 Parameter Tampering

If a WebView object is created by the QR code executor, its
initialization parameters (if not hard-coded) are usually ob-
tained from the QR code. The most common initialization
parameter is the URL parameter, which indicates the content
to be loaded into the WebView. Moreover, information about
a certain identity (e.g., a string that represents the user/client
id of SHAREit) is frequently contained in the web request.
Since the QR code standard lacks an integrity verification
mechanism, any content in a QR code can be easily tampered.
Therefore the QR code executor that scans a tampered QR
code would initialize the WebView object with modified pa-
rameters. For example, in the case of SHAREit, if we replace
the domain name in the QR code (i.e., ushareit.com) with a
malicious one (e.g., medusa-attack.com), the WebView ob-
ject would load the replaced URL if the QR code reader does
not carefully examine the input.

In response to parameter tampering, many QR code readers
do add a filter in their QR code parsers. A typical scenario for
many apps is to set a URL access allowlist (e.g., only allowing
to access https://*.twitter.com/*) if the QR code encodes
a URL. When such a content filter is deployed, the QR code
executor would directly prompt a warning when an illegal
QR code is scanned. However, this defense only blocks the
most trivial tampering (i.e., directly replacing the content of
the original QR code with a malicious URL); there are many
complex cases in which the attackers are able to control other
parameters and thus launch the MEDUSA attack. In addition,
the filter cannot distinguish the malicious URL accurately
(Section 5.7 and Section 6 give some examples of ineffective
URL filters).

3.3.3 RAH Invoking

Once we have a QR code to create a WebView object and
launch a hijacked web access, the final step is to invoke RAHs
in the app to execute different functions and carry out at-
tacking tasks. As mentioned in Section 2.3, a remote party
can invoke both standard RAHs and custom RAHs. Standard
RAHs are open APIs and seldom represent substantive threats
because the risks of standard RAH abuse have already been
pointed and corresponding defense strategies have been de-
vised [22–24, 54]. Hence a MEDUSA attack mainly utilizes
the custom RAHs registered to the created WebView object.

Each time when a WebView object is initialized, we can
dynamically analyze its loading events to record its dynami-
cally registered custom RAHs. The dynamic analysis, how-
ever, only collects the interface information of the regis-
tered custom RAHs, but does not tell how a specific RAH
is invoked. Hence we need to further analyze the concrete
implementation of an RAH to invoke it correctly. Take
the getSzUserInfo RAH in SHAREit as an example; we
first dynamically pinpoint the created WebView, and then
obtain the name of the RAH host object by parsing the



code: this.Q.addJavascriptInterface(new WebClient(),
"client"). Next, we traverse the client object to find in-
terfaces of all custom RAHs, and then we can invoke each
custom RAH according to its interface declaration. In this
case, the interface is public String getSzUserInfo(); thus
we can directly invoke it with no parameter and expect to get
the execution result as a string.

4 Vulnerable App Detection

In this section, we discuss how to determine whether an An-
droid or iOS app is vulnerable to the MEDUSA attack. Note
that since the QR code readers in Android and iOS apps have a
similar behavior from the user end, we adopt a unified method
to test apps on both platforms.

4.1 Detection Workflow
We propose a workflow for vulnerable app detection based
on an analysis with four stages, namely (see Figure 2) RAH
Presence Analysis (stage 1), RAH Registration Analysis (stage
2), Insecure QR Code Reader Identification (stage 3), and
Exploit Construction (stage 4), described in what follows.
• Stage 1: The detection workflow starts from checking

whether a tested app contains any custom RAHs. We ob-
serve that any custom RAH must first register itself to a
host WebView object before being used. The ways accord-
ing to which an Android or iOS app can register custom
RAHs are limited (i.e., by invoking certain RAH interface
registration functions such as addJavascriptInterface).
Hence in this stage, each app is statically analyzed to check
whether it contains code snippets of custom RAH registra-
tion to determine whether the app uses custom RAHs.

• Stage 2: If an app contains custom RAHs, our detection
workflow then collects all custom RAHs registered to the
built-in QR code executor created WebView objects, and
analyzes the RAH registration procedure to understand
how those RAHs should be invoked remotely. For each
tested app, we manually collect its official QR code, and
scan the QR code using the built-in QR code reader, respec-
tively. Meanwhile, the execution of the app is dynamically
monitored to find whether a WebView object is created. If
a WebView object is created, our tool analyzes how the in-
volved custom RAHs are invoked by extracting the custom
RAH interface registration procedures.

• Stage 3: Once we have pinpointed the registered custom
RAHs, our detection identifies whether a built-in QR code
reader thoroughly checks the content of its scanned QR
codes. Given an app with a QR code reader, our detection
utilizes three kinds of QR codes (i.e., third-party URL,
official URL, and official QR code) to test whether the
QR code executor would access web resources to what
extent. If it is able to access any arbitrary web resources,
our detection workflow reports an insecure QR reader.

• Stage 4: To determine whether an app, with an insecure QR
reader is actually vulnerable to the MEDUSA attack and the
severity of the attack, the detection workflow constructs a
proof-of-concept exploit, including an attacker-controlled
QR code and a malicious webpage which invokes the cus-
tom RAHs against the victim app. If the exploit can trick
the app into accessing the malicious webpage and its cus-
tom RAHs are invoked by the webpage, the detection work-
flow confirms the app as vulnerable.
In the following, we elaborate each detection stage.

4.2 RAH Presence Analysis

We examined the development documentations to summarize
the five types of custom RAHs discussed in this paper, and
collected static features (i.e., RAH registration functions) to
help detect every type of them. Our detection then utilizes
these features and conducts a detailed RAH interface discov-
ering process for Android and iOS apps described in what
follows.
Android Apps: We implement a static RAH interface de-
tection tool for Android apps on top of Soot [37]. Our tool
first uses Soot to extract basic information from Dalvik byte-
code, including the name, member variables, super class, in-
terfaces, and methods of classes as well as the parameter
types, return types, and all tags (such as Annotation and De-
bug Type) of methods. After that, our detection traverses all
Java classes in the app to pinpoint RAH registration proce-
dures (we detail each type of RAH registration in Section A.1
in Appendix). For RaT-1, our detection searches the use of
addJavascriptInterface method for any WebView object.
For RaT-2, our detection uses the class inheritance relation-
ships to find all the sub-classes of WebViewClient, and then
traverses all methods of these sub-classes to detect if any of
them is a customized event handler (i.e., a custom RAH).
iOS Apps: We detect custom RAH registrations in an iOS
app by simply checking the use of specific classes and meth-
ods (the details of those classes and methods related to each
type of RAH registration are listed in Section A.2 in Ap-
pendix). We use IDA to analyze the (decrypted) executable
code of an iOS app, extract all the method names from its
__objc_selrefs section and all the class names from the
__objc_classrefs region 3. After the extraction, our detec-
tion checks if the WKWebViewConfiguration class is used and
the addScriptMessageHandler:name: method is called for
RiT-1; if the WebViewJavascriptBridge class is used and the
registerHandler:handler: and bridgeForWebView: meth-
ods are called for RiT-2; and if the DWKWebView class is used
and the addJavascriptObject:namespace: method is called
for RiT-3.

3We observe that even though many iOS apps today are developed using
Swift, developers can still register custom RAHs via Objective-C. Hence our
detection does not need to consider additional reverse engineering techniques,
even if an app is mainly developed in Swift.



App 
Dataset

Soot

IDA

§ 4.2

Chrome
DevTools

Frida

Xposed

App
Exploited

§ 4.4
Malicious
QR Code

§ 4.5

WebView

RAH Invoking
Script

§ 4.3

Third-Party 
URL

Official
URL

Official 
QR Code

Type-A

Type-B

Type-C

Official QR Code

Custom RAHs

Insecure QR Code Reader

Figure 2: Workflow for identifying apps affected by the MEDUSA attack

4.3 RAH Registration Analysis

In this stage, a dynamic analysis is used to collect the reg-
istered custom RAHs when a tested app creates a WebView
object after scanning the official QR code. Then the RAH
registration procedure is extracted to help understand how
those RAHs should be used.
Android Apps: To enforce the remote debug feature,
we first use Xposed [55] instrumentation framework to
execute WebView.setWebContentsDebuggingEnabled(true)
before the Android app is executed. Next, we utilize
Chrome DevTools [16] to monitor the created WebView objects.
Once a WebView is pinpointed, our detection tool analyzes its
relevant code snippet to find the registration procedure of cus-
tom RAHs. For RaT-1, our tool parses the first parameter of
addJavascriptInterface(Object object, String name)

to obtain the RAH host object, and labels all methods with
the @JavascriptInterface annotation in this host object
as interfaces of custom RAHs. Moreover, we need to also
record the second parameter of addJavascriptInterface as
the name of the RAH host object, and thus we can invoke the
RAH in the form of {RAH host object name}.{RAH interface
name} (e.g., jsbridge.getUserToken()). For RaT-2, since
the WebViewClient instance can be retrieved by calling
getWebViewClient method. We leverage Xposed to obtain
the WebView instance, retrieve the WebViewClient and get its
class name. Then we can obtain this WebViewClient instance
containing customized event handler methods.
iOS Apps: For iOS apps, our detection tool dynamically
monitors the methods mentioned in Section 4.2. We imple-
ment three Frida [20] scripts to parse the parameters of those
method invocations, and obtain information about (custom)
RAH registration. For RiT-1, we parse the name parameter
of addScriptMessageHandler:name: method; For RiT-2 and
RiT-3, our script obtains the current WKWebView instance and
the navigationDelegate property. If the value of the property
is an instance of WebViewJavascriptBridge or its subclass,
our script invokes the method [_base messageHandlers] to

collect all RAHs. For RiT-3, our script retrieves the current
WKWebView instance and parses its class name and super-
class. If the WKWebView is an instance of DWKWebView or
its sub-class, we retrieve the value of its member variable
javaScriptNamespaceInterfaces to obtain all RAHs.

4.4 Insecure QR Code Reader Identification

To test whether a QR code reader is insecure (i.e., lacking
effective input sanitization), we first use it to scan a QR code
that encodes a third-party URL (e.g., medusa-attack.com),
and check if a WebView object is straightforwardly created
(Type-A QR code executor). For a QR code reader that does
not accept this QR code, we continuously use it to scan a QR
code that encodes the official URL of the app. For instance,
for a tested app developed by Google, we construct a QR
code that encodes google.com and let the app scan it. If at
this time the app accepts the QR code and opens a WebView
correspondingly (Type-B QR code executor), this implies
the existence of a URL filter. A typical URL filter sets an
allowlist to permit the access of a URL containing/starting
with/ending with a specific string (usually the official domain
name of the app). However, such a filter may still accept some
meticulously crafted URLs. In Section 4.5 we demonstrate
how to bypass common URL filters and in Section 5.7 we
give complex examples to show that real-world URL filters
are not effective.

For an app that only accepts its official QR code (Type-C
QR code executor), we decode the official QR code to check
which parts of the content are used to create the WebView
object. In particular, we first parse the created WebView ob-
ject to obtain its loaded URL, then we check whether some
contents of the official QR code are used as the entire or part
of the loaded URL. If so, we try to replace the included con-
tent with a third-party URL, testing whether we can hijack
the web access.



4.5 Exploit Construction
A proof-of-concept MEDUSA attack exploit consists of two
parts: a malicious QR code to lead victim app to the attacker-
controlled web resources, and a malicious webpage containing
an RAH invoking script to utilize the exposed RAHs.

4.5.1 Malicious QR Code

The malicious QR code embeds an attacker crafted URL
in its content, inducing the QR code executor to create
a WebView object and load the URL. In particular, for
Type-A QR code executor, we simply encode the URL as
a QR code. For Type-B QR code executor, we can craft
two kinds of URLs, aiming to circumvent the URL filter.
The first kind of URL leverages the complexity of URL
definition according to RFC-1738 [39]. Since a URL can
include various possible separators, it is very challenging
for developers to apply an accurate filter even if they adopt
complex pattern matching. For example, if we craft a
URL http://allowlist.com:123456@medusa-attack.com/
which contains a user name of allowlist.com and a password
123456, the filter may be tricked into believing that the do-
main name of this URL is actually allowlist.com. Similarly,
if the filter defines a pattern of *.allowlist.com, we can con-
struct a URL http://medusa-attack.com#whitelist.com/
to bypass the filtering. The second kind of URL leverages
the open redirect issue [14]. We observe that for many apps
we can find a redirect proxy in their official websites (e.g.,
https://app.com/redirect.php?url=https://attack.com).
Our malicious QR code leverages such redirect proxies
to craft a URL with redirection, leading the WebView
object to eventually visit the attack-controlled web resource.
For Type-C QR code executor, only if we can hijack the
WebView object by mutating the official QR code, we can
construct a corresponding malicious QR code. Otherwise
there is no circumvention method.

In a variant of MEDUSA attack, the attacker can make use of
the app link (deep link [15] in Android and universal link [50]
in iOS) to conduct a cross-app RAH invocation. That is, the
malicious QR code contains an app link that could direct the
execution from the host app to a guest app, and the guest
app may also execute some RAHs according to its handler
to the app link. However, in this situation there is an explicit
execution redirection, which can be easily noticed by the user.
Hence we leave it as a future work to explore such a variant,
although it extends the range of standard MEDUSA attack.

4.5.2 RAH Invoking Script

After the malicious QR code is generated, the next task is to
develop an RAH invoking script and deploy it for the app to
load. However, even though we can pinpoint all available
custom RAHs, it is not easy to successfully invoke them
remotely. RAHs are not always invoked in a unified way,

and to access some of them a series of parameters should
be first prepared. Since the app does not provide informa-
tion about how to invoke RAHs, we additionally examine
the official websites of apps to find how their web pages in-
voke these custom RAHs. For instance, to invoke an already-
registered custom RiT-2 RAH, an extra step is required at
the web side. As Listing 1 shows, only when the web page
(JS code) first explicitly sets an attribute of WVJBframe.src as
‘https //__bridge_loaded__’, the registered custom RAHs
is actually loaded by the WebView object. Otherwise, when a
WKWebView object is created, no RAHs is attached 4.

Listing 1 Sample JS code of WebViewJavascriptBridge (par-
tial)
function setupWebViewJavascriptBridge(callback) {

...
var WVJBIframe = document.createElement('iframe');
WVJBIframe.style.display = 'none';
WVJBIframe.src = 'https://__bridge_loaded__';
document.documentElement.appendChild(WVJBIframe);
...

}
setupWebViewJavascriptBridge(function (bridge) {

bridge.callHandler('nativeMethod', {'arg':'value'},
function (res) {

...
}

)
});

5 Evaluation

5.1 Datasets
To evaluate whether real-world Android and iOS apps are
vulnerable to the MEDUSA attack, we collected 800 top
apps from Apple AppStore, Google play, and Tencent Myapp (the
largest Android app market in mainland China) as four app
datasets (each contains 200 apps). We chose the mobile app
ecosystems of the US and mainland China as our study targets
because they are the two largest ecosystems.

5.2 Experiment Setup
We utilized four mobile devices, namely a Google Pixel 2
Android phone with Android 8, a Motorola Edge 20 Pro An-
droid phone with Android 11, an iPhone 11 with iOS version
14.0.1, an iPhone SE with iOS version 14.0, to collect and
analyze the apps. We first manually installed those apps on
each device, and then extracted their executable to conduct
our static analysis and perform on-device dynamic analysis.

To handle iOS app encryption, we utilized FoulWrapper [19],
an automated iOS app decryptor working on jailbroken
iPhones, to extract executable and resource files of iOS apps.

4This example is actually provided at GitHub [51].



Table 1: How apps use built-in QR code readers

Detaset # of Apps S1 S2 S3

Android-CN 200 148(74.0%) 131(65.5%) 56(28%)

Android-US 200 60(30.0%) 34(17.0%) 17(8.5%)

iOS-CN 200 123(61.5%) 108(54.0%) 39(19.5%)

iOS-US 200 46(23.0%) 14(7.0%) 3(1.5%)

Total 800 377(47.1%) 287(35.9%) 115(14.4%)

S1: Apps with built-in QR code readers
S2: Apps that their built-in QR code readers could launch a WebView
S3: Apps that contain insecure QR code readers

We also modified the standard AOSP source code to build
an Android app unpacking framework to handle packed An-
droid apps (especially those apps from Tencent Myapp). Our
static analysis for app executable used IDA Pro and Soot and
was performed on a Ubuntu 22.04 server with two Intel Xeon
Platinum 8358 Processors and 2TB RAM. We released our
analysis tools and results on our website [31].

5.3 Analysis of Built-in QR Code Readers

To confirm the use of built-in QR code reader in an app, we
first manually checked whether it supports QR code scan-
ning, and if so then applied our vulnerability detection pro-
cess to find insecure QR code readers. Table 1 gives the
detailed analysis results for the apps with built-in QR code
readers. Among the 800 apps, our analysis shows that nearly
half of them (377/800, 47.1%) utilize built-in QR code read-
ers. Particularly, the ratio of Android apps using built-in QR
code readers (42.2%, 169/400) is lower than that of iOS apps
(52.0%, 208/400). An interesting observation is that the apps
used in mainland China are more likely to use built-in QR
code readers than the ones used in the US (67.7%, 271/400 vs.
26.5%, 106/400). Such results are consistent with the statis-
tics indicating that China is using QR codes excessively as a
bridge between online and offline [35].

It is important to notice that today most QR codes are
specifically designed to be handled only by the corresponding
apps. For instance, a QR code designed for Outlook authenti-
cation only allows the Outlook app to handle the short-lived
token to sign into the accounts of the users [33]. Other apps
would not be able to parse the token embedded in such a QR
code. Such a uniqueness enforces one prerequisite for the
MEDUSA attack, that is, that target apps should be installed to
scan QR codes. However, the result is that users would have
to install various mobile apps in order to scan the codes. As a
result, large numbers of apps are installed that could be prone
to the MEDUSA attack.

We collected the official QR codes of all the 377 apps and
utilized these QR codes to test whether the built-in QR code
readers launched WebView. After scanning the official QR

codes, more than three-quarters of the apps with built-in QR
code readers (76.1%, 287/377) would create a WebView ob-
ject to access web content. To understand why apps frequently
access the web after QR code scanning, we manually checked
the functionalities of those built-in QR code readers. Figure 3
shows the distribution of the functionalities that access the
web. We can see from the figure that only a small portion
of the built-in QR code readers are used to execute the most
naive show-the-content task, while other QR code readers
generally implement more sophisticated tasks, such as mak-
ing a payment, starting a online meeting, etc. This implies
that web access is essential for the operations following the
QR code scanning.

33

92

24

56

41

18

21

6

13

35

74

18

46

41

9

29

4

7

0 30 60 90 120

Show the Content

Log in

Digital Payment

Add Contacts

Ad Promotion

Connect to IoT Device

E-Commerce

Online meeting

Share Files

Android iOS

Figure 3: Distribution of the functionalities for different QR
code readers

After identifying the apps whose built-in QR code readers
can launch a WebView, we investigated how many of the QR
code readers were able to launch a WebView to access mali-
cious web content and the created WebView contains custom
RAHs. To our surprise, we found 115 apps that created a We-
bView object without applying any sanitization to the input
received by their QR code readers; they always accepted a QR
code encoding a malicious URL (and loaded it). In addition,
we discovered that even though apps would reject a QR code
with a malicious URL directly encoded, they could still be
flawed. By applying the two bypass approaches mentioned
in Section 4.5.1, we found that eight apps with more than 10
million users were still tricked into accepting a sophisticated
crafted QR code. Details about how we bypass those QR code
content filters and our manual inspection of implementation
flaws are discussed in Section 5.5.

Finding I: 377 out of the 800 analyzed popular mobile
apps use built-in QR code readers; 123 of them (36.5%)
are insecurely used.



Table 2: Numbers of apps with different types of custom RAHs registered

Dataset APPs with RAH RaT-1 RaT-2 Dataset APPs with RAH RiT-1 RiT-2 RiT-3

Android-CN 182/200 (91.0%) 180 182 iOS-CN 181/200 (90.5%) 180 109 5
Android-US 185/200 (92.5%) 171 185 iOS-US 102/200 (51.0%) 102 7 0

5.4 Analysis of Custom RAHs
In our experiments, we first conducted a scalable static analy-
sis to filter the apps without custom RAHs. Our tool spent 1.5
on average seconds for scanning an app and reported the types
of RAHs that the app contains; different apps can be analyzed
in parallel. Note that such a time does not include pre-analysis
costs, such as IDA database creation. Table 2 reports data
about the frequency of use by the analyzed Android and iOS
apps for the different types of custom RAHs. We can see that
popular mobile apps commonly register custom RAHs. Even
for the iOS-US dataset with the lowest ratio of RAH registra-
tions, more than half of the apps in the dataset use at least
one type of custom RAH. For each of the other three datasets,
the ratio of RAH registrations exceeds 90%. Furthermore,
we find that mobile apps also use multiple types of RAHs.
Among the 400 Android apps, our analysis results show that
351 (87.6%) of them contain RaT-1 and 367 (91.6%) contain
RaT-2. In comparison, 282 (70.5%) iOS apps contain RiT-1,
116 (29.0%) apps contain RiT-2, and only 5 (1.3%) apps con-
tain RiT-3. The only major difference between the US and
Chinese app developers is that Chinese iOS app developers
tend to use RiT-2, while only a few US developers use this
type of RAH.

Our next experiments investigated the details of custom
RAHs when a WebView is launched. We monitored the cre-
ation of a WebView and analyzed its custom RAH registra-
tion procedure to obtain information of its belonging custom
RAHs (including the interface name and the name of the RAH
host object). In total, our dynamic analysis discovered 2,872
custom RAHs (2,251 in Android apps, 621 in iOS apps).

Finding II: Custom RAHs are present in 650 out of the
800 analyzed popular mobile apps. The apps with insecure
QR code readers contain 2,872 custom RAHs that could be
exploited.

5.5 Vulnerability Exploitation
In our experiment, we first generated malicious QR codes
for all 123 apps with insecure QR code readers. For those
115 apps without any URL sanitization, we simply generated
a QR code with a malicious URL encoded. For the other 8
apps that required a more sophisticated QR code to bypass
their content filters, we generally leveraged two types of im-
plementation flaws. The first type of flawed implementation
employed incomplete URL parsing. That is, the content filter

does not consider the many corner cases of URL formats and
thus our attack can utilize a URL with an irregular format to
bypass the filter. In our experiment, 6 apps suffered from this
flaw. The second type of flawed implementation ignored the
URL redirection; the attacker could then find a URL with a le-
gal domain name but supporting URL redirection to indirectly
access the originally blocked address. In our experiment, 2
apps suffered from this flaw.

After using malicious QR codes to trigger WebView ini-
tialization, we were able to access all 2,872 custom RAHs.
An interesting observation is that an app often uses similar
or even the same RAHs in its Android and iOS versions.
Take the apps developed by SHEIN [43] e-commerce com-
pany (43.7m+ users) as an example; we could efficiently
construct one RAH invoking script to access custom RAHs
in the two versions of the app. To further investigate the
influence of each RAH, we manually reviewed them. If a
custom RAH does not obfuscate its interface name, we can
infer its importance from the name. For instance, the custom
RAHs getDeviceInfo, getUserAccessToken, nativeLogin,
and getCurrentPositionwere judged as privileged functions.
For those custom RAHs with ambiguous interface names, we
checked their implementations to confirm their functionali-
ties. Finally, our review labelled 515 custom RAHs in 80 apps
(472/43 in 56/24 Android/iOS apps) as sensitive ones.

Interestingly, we found that not all sensitive custom RAHs
returned execution results after having been invoked. In par-
ticular, 317 of them (61.5%) returned execution results, while
the rest 213 custom RAHs did not respond. We then inspected
those 213 RAHs, and found that they would execute only after
a specific validation. However, the validations used by these
custom RAHs are very ad hoc, and some of them may also be
bypassed. It is thus clear that a general effective defense for
custom RAHs does not exist; in Section 6 we further discuss
the RAH protection issue.

By utilizing those sensitive custom RAHs, an attacker could
manipulate the victim apps to leak sensitive user data such as
authentication tokens and private information. In particular,
254 custom RAHs leaked user private information, such as
contacts and location information, and 31 ones leaked authen-
tication tokens. More seriously, we found that some custom
RAHs could be used to remotely modify user data: 28 cus-
tom RAHs allowed the invoker to store data at the mobile
device, and 4 custom RAHs even allowed the invoker to ma-
nipulate the victim apps to modify the user data stored at app
servers. In total, we verified that 46 apps have high-severity



vulnerabilities.

Finding III: 515 out of the 2,872 custom RAHs in 80/123
apps with insecure QR code readers execute dangerous
operations, and 317 of them could be abused to carry out
high-severity security/privacy attacks.

5.6 Analysis Accuracy
The accuracy of our analysis can be evaluated from three
aspects. First, the identification of the 123 insecurely used
QR code readers did not suffer from false positives but only
from some false negatives. Although some QR code readers
with more complex URL filters, labeled as “secure” in our
tests, could still be circumvented by advanced exploits, we
argue that currently there is no unified approach to detect
vulnerabilities enabling such advanced exploit. Second, since
the 2,872 custom RAHs were discovered using a dynamic
analysis during the actual execution, this number is confirmed
to be accurate without any false negatives and false positives.
Finally, for the 317 out of the 515 dangerous custom RAHs
that affected 46 apps, we tested them and the vulnerabilities
were confirmed. Of course, it would be still possible to exe-
cute the other 213 RAHs out of the 515 dangerous custom
RAHs. However, such an execution would have required us
to monitor how the legitimate users invoke them and thus is
out of the scope of our detection (for obvious privacy and
legal reasons). In summary, although we cannot obtain the
ground truth of our entire datasets, our detection guarantees
that the reported vulnerable apps are actually affected by the
MEDUSA attack.

5.7 Case Studies
5.7.1 Authentication Token Leak

Bank of China [9] is the third largest bank in China with more
than 321 million registered users. Its mobile apps (both An-
droid and iOS versions) contain built-in QR code readers able
to create WebView objects. However, the web access can only
be hijacked in a very indirect way. In fact, we found that nei-
ther the Android nor the iOS app accepted a third-party URL,
which indicated that those apps use a filter to restrict the URL
to be accessed. A more comprehensive analysis we conducted
demonstrated that the apps only accepted URLs with hard-
coded prefix, which means that one cannot directly tamper
the URL body to hijack the apps. Nonetheless, we examined
the official QR code and found a specific functionCode?=xxx
parameter in the URL, which suggests that the app (we use the
Android app as an example) utilized ARouter [7], a third-party
URL parsing and re-direction framework to execute different
routines according to the value of this parameter (that part of
the QR code content was processed as Listing 2 shows). We
observed that if the value of functionCode parameter equals

to crossborderWebPage, the ARouter would launch an Activ-
ity that is able to trigger an in-app browsing. Moreover, if
at that time we provided an extra url?=https://xxx.com pa-
rameter, the Activity would transfer the value to its created
WebView object. As a result, we could craft a URL with cer-
tain functionCode and url parameters to hijack the indirectly
launched WebView to access malicious web contents. This
MEDUSA attack case shows that a QR code could affect differ-
ent components in the app to create WebView objects and that
a comprehensive input sanitization is required to eliminate
every kind of malicious input.

Listing 2 Processing code of QR code content in BOC app
(we use the Android version as an example)
if (WebUrl.getShareHomeUrl().equals(query) && ... ) {

...
qRCodeModel.setRoutePath(query.replace(

"functionCode=", "BOCBANK://search/"));
return qRCodeModel;

...
}

5.7.2 Denial-of-Service Attack

Taobao app [46] is the official mobile app of Taobao, a popular
Chinese E-Commerce website – the 8th most visited website
in the world and the 5th most visited website in China as of
2021. It maintained an allowlist to restrict the URL to only
access the Taobao website. However, the Taobao website is
very large and inevitably contains many sub-sites. We could
find some URLs with HTTP-redirection enabled to bypass
the filter. After the HTTP-redirection bypassed the URL filter,
it would trigger the app to show an Alert window when the
actually accessed web page was loaded. To construct a more
stealthy attack, we attempted to replace the redirection target
from a URL to an app link [6, 15]. This however would crash
the app. We examined the code to find whether the app had
received the app link containing a parameter we maliciously
construct. We found that the app would still starts the Activity
the app link registers to and pass the parameter to it. Since
the Activity fails to handle the malicious parameter, it throws
an uncaught exception and crashes the host app.

5.8 Manual Effort Required
Most of the detection steps discussed in Section 4 are exe-
cuted automatically. There are only three tasks that require
manual operations. First, our experiments require the analysts
to collect official QR codes and register for each tested app
a user account. On average, it costs one author five minutes
to collect the official QR code as well as register an account
for each of the 377 apps with QR code readers. Note that the
preparation does not need security expertise. Second, after the
identification of custom RAHs, a manual analysis is needed



to assess their functionalities and develop relevant scripts for
invoking them. For the 2,872 custom RAHs, two of the pa-
per authors spent five days (eight hours per day) to manually
assess them. Thus, the average cost for one person to assess
one custom RAH is less than two minutes. Finally, the most
time-consuming part of the experiment is to construct a ma-
licious QR code to circumvent the URL filters. One of the
paper authors, with good web security skills, carried out this
task and took an average of one hour to successfully generate
an exploitable QR code. Fortunately, in our experiments most
of the vulnerable apps (115/123) did not required such an
effort due to the lack of input check. We had to conduct URL
filter bypass only for eight apps.

Ideally, advanced program analysis techniques such as sym-
bolic execution and taint analysis could automate the detection
of flawed QR code scanning. In real-world scenarios, however,
many issues hinder their use. First, in today’s mobile apps, the
detection of the MEDUSA attack vulnerability involves the
analysis of different code layers (native code, Java bytecode,
and HTML+JS code) and the existing taint analysis tools or
symbolic execution tools cannot handle such cross-layer code
well. Second, many apps apply code obfuscation and code
packing to prevent a fully automated, fine-grained static anal-
ysis. Therefore, our detection intentionally utilizes a heuristic
analysis instead of a heavy-weight analysis (e.g., symbolic
execution or code slicing) to guarantee that it can be executed
on most popular mobile apps.

6 Countermeasures

Mitigating the MEDUSA attack is not easy for both the in-app
QR code scanning and the use of RAHs must consider many
usability issues. In this section we discuss how to mitigate the
MEDUSA attack by three typical defense strategies. We also
showcase some ill-implemented defenses to demonstrate the
difficulties of fixing MEDUSA attack related flaws.

QR Code Signature. Since the input added through the build-
in QR reader can be manipulated by any party, such a scheme
is insecure. As discussed in Section 5.5, it is difficult to cor-
rectly implement content filters correctly that only aim to
process QR contents. To defend against the MEDUSA attack,
signature verification could be applied to check that the QR
code is generated by a trusted source. Such a mechanism
could prevent the processing of maliciously constructed QR
codes. For example, according to the signature verification
proposed by previous works [17, 40, 45], when generating
a QR code, the content is signed using cryptographic algo-
rithms. Then the digital signature is integrated into the QR
code. When scanning the QR codes, the app verifies the sig-
nature to determine whether the QR code is trusted.

WebView URL Filter. Since a MEDUSA attack mainly
aims to hijack the WebView object to access malicious
web contents, it is critical to implement a filter to prevent

the WebView from opening untrusted URLs in the app. In
Android, we can override the shouldOverrideUrlLoading
method of WebView to strictly filter each URL before load-
ing it. In this case, we can prevent attackers from abus-
ing domains in the whitelist to redirect the URL from a
trust one to an untrusted URL. In iOS, we can adopt the
WKNavigationDelegate protocol and implement the methods
of ForNavigationActionPolicy, which determine whether
the WebView can navigate to the given URL. Then we can
instantiate and set it to WKWebView and all the redirection in
the WebView would be filtered.

We argue that although applying a filter before the loading
the URL could block malicious input to a certain extent, in
real world the apps and their scanned URLs are very diversi-
fied. If the app developer are not able to clearly understand
the the root cause of the MEDUSA attack, they may design
incomplete or even incorrect defenses. During our research
we contacted several app developers and sent them details
about vulnerabilities in their apps, trying to help them address
the issues. Unfortunately, we observed that although many
developers patched their apps accordingly, those patches did
not fundamentally fix the vulnerability. Take the 12306 [1]
app, an official app of China State Railway Group Co., Ltd.
(CHINA RAILWAY) that serves 1.4 billion users, as an ex-
ample. Both the Android and iOS (version 5.5.1.4, by August
2022) apps were vulnerable to the MEDUSA attack. After we
submitted detailed information about the vulnerabilities to
the developers, we received responses claiming that the apps
had been updated and the vulnerabilities fixed. Unfortunately,
our second inspection of the updated version (5.6.0.8) found
that developers only had added an incomplete filter to the QR
code parser. The filter extracted the domain from the QR code
content in the URL format incorrectly. More specifically, it
failed to resolve the ‘@’ separator, and only checked if the
domain contained some hard-coded strings. As a result, we
submitted another vulnerability report to the developers again,
and finally helped them deploy a secure filter.

Another case of bad fix is the SuiShenBan [44] app, an E-
Identity app serving more than 30 million citizens of Shang-
hai, the largest city of China. During the COVID-19 pandemic
the app had been widely used to scan QR codes for infection
control and prevention. We found that after the app scans a
QR code, it would first send the decoded data to a remote
server for filtering, and if the remote server gives a positive
feedback on the decoded data (i.e., the URL is accessible), the
app would create a WebView object to access relevant web
content. However, some domains in the allowlist still help
open malicious web pages inside the app. For example, we
found a web page, whose domain name is in the allowlist,
but which would redirect to any other URLs if a parameter
named redirect_uri is passed when the web page is loaded.
This kind of web page is very common in the allowlist and
we randomly selected one of them as a proxy, launching the
MEDUSA attack and obtaining authentication ticket of users.



After we reported the flaw to the developers, they incorrectly
patched the remote filtering server to only add the known
proxy web pages into a denylist. As a result, attackers could
easily replace the prohibited proxy with another one to launch
the MEDUSA attack again. We finally helped them address
this issue by suggesting to apply a second filter before the
WebView loads any URL.

RAH protection. Developers can also check the identity
of the invoker inside an RAH to prevent a malicious web
server from using their custom RAHs. Unfortunately, like
the case of the WebView URL filters, the checks inside cus-
tom RAHs are also error-prone. An example is the app of
China Construction Bank [10] (one of the largest banks in China
with more than 280 million users). Its CCBBridge RAH, which
is able to access the authentication token of the user, applied
a filter inside to check if it is invoked from a web page whose
URL contains a “.ccb.com” string. We found that this filter
was deployed in both Android and iOS versions. Obviously,
such a filter is easy to circumvent by adding the “magic”
.ccb.com string to the query of a malicious URL as a param-
eter, not affecting the web access, thus making possible to
invoke the RAH successfully.

Another interesting observation is that many popular frame-
works (e.g., React Native [38], Cordova [12], Weex [52],
Nebula [32]) for building platform-independent mobile apps
also register custom RAHs. Such frameworks often provide a
unified way for developers to register their own custom RAHs,
and allow users to configure access control policies for the
custom RAHs. Consider the Apache Cordova framework as
an example. It introduces a __cordovaNative object to help
JavaScript in the WebView object access any native functions
out of the sandbox without alert. But if the developer explic-
itly defines an allowlist to restrict the access range of this
object [3], the attacker is unable to abuse it. Unfortunately,
we did not find concrete instructions in official documents of
these frameworks to guide developers on how to configure
the protection against custom RAHs, As a result, many de-
velopers adopt default configurations and all relevant custom
RAHs are exposed without any protection.

7 Related Work

QR Code Related Attacks. Previous works have focused on
the use of QR codes and direct attacks against them. Lerner
et al. [2] examined general use patterns of QR codes in the
wild and identified common and uncommon uses and misuses.
Kieseberg et al. [34] launched various attacks by changing
some pixels of QR codes (e.g., SQL injection, phishing and
social engineering). Those attacks show that QR codes can
be easily modified by attackers. Hence it is essential for de-
velopers to implement suitable protection mechanisms when
scanning untrusted QR codes. Averin and Zyulyarkina pro-
posed QRGen [4], a tool for generating malicious QR code to

assess whether the QR code scanners of blockchain are se-
curely designed. Carboni et al. [21] proposed a fuzzing-based
approach to automatically test QR code scanners. However,
these works only focus on the QR codes, while the MEDUSA
attack aims to hijack the in-app browsing after QR code scan-
ning, triggering the custom RAHs that enable attackers to
invoke the native functions in the apps.
Web-to-App Attacks. Past research works have identified
and analyzed weaknesses of different in-app web browsing
components and related web-to-app attacks. A major category
of web-to-app attacks employs code injection against in-app
web components. Luo et al. [47] first analyzed and classified
attacks targeting WebView systematically. After that, Jin et
al. [54] discovered 14 code injection channels (including QR
code) enabling malicious code execution in HTML5-based
mobile apps. Rizzo et al. [11] evaluated the risk of JavaScript
interface abuse by mean of a man-in-the-middle (MiTM) at-
tack to inject malicious code into Android WebView; Xiao
et al. [18] further analyzed JavaScript-based cross-platform
frameworks and revealed that they exposed many attack sur-
faces for malicious script injection. Jin et al. [57] showed
that meticulously crafted inputs could be injected into real-
world Electron (HTML and JS) apps. Since all these attacks
rely on injected code to execute malicious behaviors, several
types of defense have been deployed to protect against differ-
ent attacks through different surfaces: sanitizers are used to
filter malicious inputs; Content Security Policy and X-Frame-
Options are used to restrict the browser to block contents
from harmful sources; and enforcement of Strict Transport
Security to defend against communication tampering. Mobile
OSes and frameworks also have adopted additional protec-
tion against potentially harmful inputs. Take the PhoneGap
attack [47] as an example; frameworks, like PhoneGap and
its successor Cordova), now enforce validation against inputs
from vulnerable APIs such as barcodeScanner.scan [13]. As
a result, those code injection attacks are less feasible against
today’s mobile apps.

Unlike code injection attacks, the MEDUSA attack mainly
reuses registered custom RAHs in victim apps instead of in-
jecting new code to carry out the attack. Since the MEDUSA
attack does not need to inject any new code or any extra ex-
ecution flows, it is more difficult to defend against it with
a system-level security policy. Similar to the MEDUSA at-
tack, the Web-to-App Injection (W2AI) attack proposed by
Hassanshahi et al. [8] also aimed to utilize remotely accessi-
ble interfaces. However, the W2AI attack only works against
Android apps, and requires another app to send an Android
Intent containing a crafted hyperlink (i.e., URI intent or Web
Intent), while the MEDUSA attack covers both Android and
iOS platforms and does not rely on the installation of any
other third-party apps. Moreover, a Web Intent is not allowed
to launch in-app web browsing (the Android OS by default
invokes the system’s built-in browser to handle the URI) start-
ing from Android 12 [15], making W2AI attacks infeasible



on the latest mobile devices.

8 Conclusion

In this paper, we systematically analyzed the security of mod-
ern QR code scanning functionality, and proposed a new at-
tack, the MEDUSA attack, which exploits insecure built-in QR
code readers to exploit mobile apps and breach user privacy.
Typically, the MEDUSA attack utilizes meticulously crafted
QR codes to trigger custom RAHs in apps and trick them into
executing malicious actions. To assess whether the MEDUSA
attack could affect large numbers of apps, we designed a four-
stage detection approach to identify risky implementations
among various built-in QR code readers. With an evaluation
of 800 popular Android and iOS apps, we found that 123
apps were vulnerable to the MEDUSA attack, and 46 apps
contained critical or high vulnerabilities.

Acknowledgments

The authors would like to thank our shepherd and the re-
viewers for their valuable feedback, and gratefully acknowl-
edge the support from the National Natural Science Foun-
dation of China (under Grant No.62002222). We specially
thank Alibaba Group for the support of this research within
the SJTU-Alibaba Security Research Program. We would
also like to express appreciation to Sun Weiwei, Yuan Zhou,
Zhang Weijie, and Yin Jun from Waterfront Garden who gen-
erously provided iOS devices to support our research. Juanru
Li (mail@lijuanru.com) is the corresponding author.

References

[1] 12306 CHINA RAILWAY. https://www.12306.
cn/en/index.html. Accessed 2023.

[2] Adam Lerner and Alisha Saxena and Kirk Ouimet
and Ben Turley and Anthony Vance and Tadayoshi
Kohno and Franziska Roesner. Analyzing the Use of
Quick Response Codes in the Wild. In Proc. 13th
Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’15), 2015.

[3] Allow List Guide | Apache Cordova.
https://cordova.apache.org/docs/en/11.x/
guide/appdev/allowlist/index.html. Accessed
2022.

[4] Andrey Averin and Natalya Zyulyarkina. Malicious
Qr-Code Threats and Vulnerability of Blockchain.
In Proc. 2020 Global Smart Industry Conference
(GloSIC), 2020.

[5] WebView | Android Developers. https:
//developer.android.com/reference/andr
oid/webkit/WebView. Accessed 2022.

[6] Applinks | Apple Developer Documentation.
https://developer.apple.com/documentatio
n/bundleresources/applinks. Accessed 2023.

[7] ARouter • A Framework for Assisting in the Reno-
vation of Android App Componentization. https:
//github.com/alibaba/ARouter. Accessed 2022.

[8] Behnaz Hassanshahi and Yaoqi Jia and Roland
HC Yap and Prateek Saxena and Zhenkai Liang.
Web-to-Application Injection Attacks on Android:
Characterization and Detection. In Proc. 20th
European Symposium on Research in Computer
Security (ESORICS), 2015.

[9] Bank of China Global Web Site. https://www.bo
c.cn/en/. Accessed 2022.

[10] China Construction Bank Web Site. http://en.c
cb.com/en/home/indexv3.html. Accessed 2022.

[11] Claudio Rizzo and Lorenzo Cavallaro and Johannes
Kinder. Babelview: Evaluating the Impact of Code
Injection Attacks in Mobile Webviews. In Proc.
21st International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), 2018.

[12] Apache Cordova. https://cordova.apache.org
/. Accessed 2023.

[13] Security Guide - Apache Cordova. https:
//cordova.apache.org/docs/en/11.x/guide/
appdev/security/#validate-all-user-input.
Accessed 2023.

[14] CWE-601: URL Redirection to Untrusted Site.
https://cwe.mitre.org/data/definitions
/601.html. Accessed 2023.

[15] Create Deep Links to App Content | Android De-
velopers. https://developer.android.com/tr
aining/app-links/deep-linking. Accessed 2022.

[16] Chorme DevTools | Chrome Developers. https:
//developer.chrome.com/docs/devtools/. Ac-
cessed 2022.

[17] Faisal Razzak. Spamming the Internet of Things:
A Possibility and its probable Solution. In Proc.
Procedia Computer Science, 2012.

[18] Feng Xiao and Zheng Yang and Joey Allen and Guan-
gliang Yang and Grant Williams and Wenke Lee. Un-
derstanding and Mitigating Remote Code Execu-
tion Vulnerabilities in Cross-platform Ecosystem.

https://www.12306.cn/en/index.html
https://www.12306.cn/en/index.html
https://cordova.apache.org/docs/en/11.x/guide/appdev/allowlist/index.html
https://cordova.apache.org/docs/en/11.x/guide/appdev/allowlist/index.html
https://cordova.apache.org/docs/en/11.x/guide/appdev/allowlist/index.html
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.apple.com/documentation/bundleresources/applinks
https://developer.apple.com/documentation/bundleresources/applinks
https://developer.apple.com/documentation/bundleresources/applinks
https://github.com/alibaba/ARouter
https://github.com/alibaba/ARouter
https://www.boc.cn/en/
https://www.boc.cn/en/
http://en.ccb.com/en/home/indexv3.html
http://en.ccb.com/en/home/indexv3.html
https://cordova.apache.org/
https://cordova.apache.org/
https://cordova.apache.org/docs/en/11.x/guide/appdev/security/#validate-all-user-input
https://cordova.apache.org/docs/en/11.x/guide/appdev/security/#validate-all-user-input
https://cordova.apache.org/docs/en/11.x/guide/appdev/security/#validate-all-user-input
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/


In Proc. 29th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2022.

[19] FoulDecrypt. https://github.com/Lessica/f
ouldecrypt. Accessed 2022.

[20] Frida • A world-class dynamic instrumentation
framework. https://frida.re/. Accessed 2022.

[21] QR code Fuzzer Testing Toolkit for Android &
iOS. https://github.com/Maxelweb/FuzzQR.
Accessed 2022.

[22] Guangliang Yang and Jeff Huang and Guofei Gu.
Automated Generation of Event-Oriented Exploits
in Android Hybrid Apps. In Proc. 25th Network
and Distributed System Security Symposium (NDSS),
2018.

[23] Guangliang Yang and Jeff Huang and Guofei Gu.
Iframes/Popups Are Dangerous in Mobile WebView:
Studying and Mitigating Differential Context Vulner-
abilities. In Proc. 28th USENIX Security Symposium
(USENIX Security), 2019.

[24] Guangliang Yang and Jeff Huang and Guofei Gu and Ab-
ner Mendoza. Study and Mitigation of Origin Strip-
ping Vulnerabilities in Hybrid-postMessage Enabled
Mobile Applications. In Proc. 39th IEEE Symposium
on Security and Privacy (SP), 2018.

[25] Information Capacity and Versions of the QR
Code. https://www.qrcode.com/en/about/ve
rsion.html. Accessed 2022.

[26] Introduction to Web APIs. https://developer.
mozilla.org/en-US/docs/Learn/JavaScript/
Client-side_web_APIs/Introduction. Accessed
2022.

[27] WKWebView | Apple Developer Documentation.
https://developer.apple.com/documentatio
n/webkit/wkwebview?language=objc. Accessed
2022.

[28] ISO/IEC 18004:2015. https://www.iso.org/st
andard/62021.html. Accessed 2022.

[29] Lei Zhang and Zhibo Zhang and Ancong Liu and Yinzhi
Cao and Xiaohan Zhang and Yanjun Chen and Yuan
Zhang and Guangliang Yang and Min Yang. Iden-
tity Confusion in WebView-based Mobile App-in-
app Ecosystems. In Proc. 31st USENIX Security
Symposium (USENIX Security), 2022.

[30] Matthias Neugschwandtner and Martina Lindorfer and
Christian Platzer. A View to a Kill: WebView Exploita-
tion. In Proc. 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2013.

[31] Medusa Website. https://anonymous.4open.sc
ience/r/MEDUSA_Attack-2B32. Accessed 2022.

[32] Nebula SDK Documentation. https://nebulasdk.
alipay.com/en-us/nebulasdk/index.html. Ac-
cessed 2023.

[33] Use a QR code to sign-in to the Outlook mobile apps.
https://learn.microsoft.com/en-us/micros
oft-365/admin/manage/use-qr-code-downloa
d-outlook. Accessed 2023.

[34] Peter Kieseberg and Sebastian Schrittwieser and Manuel
Leithner and Martin Mulazzani and Edgar Weippl and
Lindsay Munroe and Mayank Sinha. Malicious Pix-
els Using QR Codes as Attack Vector. In Proc.
Trustworthy Ubiquitous Computing, 2012.

[35] QR Codes in China - Almost a Different Place on
Earth. https://www.qrcode-tiger.com/qr-c
odes-have-been-used-all-around-china-and
-you-can-also-track-all-the-data. Accessed
2022.

[36] Mobile QR Code Coupon Redemptions to
Surge, Surpassing 5.3 Billion by 2022.
https://www.juniperresearch.com/press/mo
bile-qr-code-coupon-redemptions-to-surge.
Accessed 2022.

[37] Raja Vallée-Rai and Phong Co and Etienne Gagnon and
Laurie Hendren and Patrick Lam and Vijay Sundaresan.
Soot: A Java Bytecode Optimization Framework.
In Proc. CASCON First Decade High Impact Papers,
1999.

[38] React Native · Learn once, write anywhere. https:
//reactnative.dev/. Accessed 2023.

[39] RFC 1738: Uniform Resource Locators (URL).
https://www.rfc-editor.org/rfc/rfc1738. Ac-
cessed 2022.

[40] Riccardo Focardi and Flaminia L. Luccio and Heider
A.M. Wahsheh. Usable security for QR code. In
Proc. Journal of Information Security and Applications,
2019.

[41] Risks of Using QRCodes and How to Mit-
igate it – Not as Safe as You Think.
https://www.computer.org/publications/
tech-news/trends/qr-code-risks. Accessed
2022.

[42] SHAREit - User Oriented Cross Platform & High-
speed File Sharing Platform. https://www.usha
reit.com/product/shareit. Accessed 2022.

https://github.com/Lessica/fouldecrypt
https://github.com/Lessica/fouldecrypt
https://frida.re/
https://github.com/Maxelweb/FuzzQR
https://www.qrcode.com/en/about/version.html
https://www.qrcode.com/en/about/version.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.apple.com/documentation/webkit/wkwebview?language=objc
https://developer.apple.com/documentation/webkit/wkwebview?language=objc
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://anonymous.4open.science/r/MEDUSA_Attack-2B32
https://anonymous.4open.science/r/MEDUSA_Attack-2B32
https://nebulasdk.alipay.com/en-us/nebulasdk/index.html
https://nebulasdk.alipay.com/en-us/nebulasdk/index.html
https://learn.microsoft.com/en-us/microsoft-365/admin/manage/use-qr-code-download-outlook
https://learn.microsoft.com/en-us/microsoft-365/admin/manage/use-qr-code-download-outlook
https://learn.microsoft.com/en-us/microsoft-365/admin/manage/use-qr-code-download-outlook
https://www.qrcode-tiger.com/qr-codes-have-been-used-all-around-china-and-you-can-also-track-all-the-data
https://www.qrcode-tiger.com/qr-codes-have-been-used-all-around-china-and-you-can-also-track-all-the-data
https://www.qrcode-tiger.com/qr-codes-have-been-used-all-around-china-and-you-can-also-track-all-the-data
https://www.juniperresearch.com/press/mobile-qr-code-coupon-redemptions-to-surge
https://www.juniperresearch.com/press/mobile-qr-code-coupon-redemptions-to-surge
https://www.juniperresearch.com/press/mobile-qr-code-coupon-redemptions-to-surge
https://reactnative.dev/
https://reactnative.dev/
https://www.rfc-editor.org/rfc/rfc1738
https://www.rfc-editor.org/rfc/rfc1738
https://www.computer.org/publications/tech-news/trends/qr-code-risks
https://www.computer.org/publications/tech-news/trends/qr-code-risks
https://www.computer.org/publications/tech-news/trends/qr-code-risks
https://www.ushareit.com/product/shareit
https://www.ushareit.com/product/shareit


[43] SHEIN - Fashion Shopping Online. https://us.s
hein.com/. Accessed 2022.

[44] Suishenban - Shanghai Municipal People’s Gov-
ernment. http://zwdt.sh.gov.cn/govPortals/
column/download/application.html. Accessed
2022.

[45] Takayuki Ishihara and Michiharu Niimi. Compati-
ble 2D-Code Having Tamper Detection System with
QR-Code. In Proc. 10th International Conference on
Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP), 2014.

[46] Taobao Web Site. https://world.taobao.com/.
Accessed 2022.

[47] Tongbo Luo and Hao Hao and Wenliang Du and Yifei
Wang and Heng Yin. Attacks on WebView in the An-
droid System. In Proc. 27th Annual Computer Security
Applications Conference (ACSAC), 2011.

[48] Tongxin Li and Xueqiang Wang and Mingming Zha
and Kai Chen and XiaoFeng Wang and Luyi Xing and
Xiaolong Bai and Nan Zhang and Xinhui Han. Un-
leashing the Walking Dead: Understanding Cross-
App Remote Infections on Mobile WebViews. In
Proc. 24th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017.

[49] Deadline Extended for App Updates Using UIWe-
bView. https://developer.apple.com/news/?
id=edwud51q. Accessed 2022.

[50] Allowing Apps and Websites to Link to Your
Content. https://developer.apple.com/docu
mentation/xcode/allowing-apps-and-website
s-to-link-to-your-content. Accessed 2022.

[51] WebViewJavascriptBridge. https://github.com
/marcuswestin/WebViewJavascriptBridge. Ac-
cessed 2022.

[52] Weex • A framework for building Mobile cross-
platform UI. https://github.com/alibaba/wee
x. Accessed 2023.

[53] WhatsApp Web. https://web.whatsapp.com/.
Accessed 2022.

[54] Xing Jin and Xunchao Hu and Kailiang Ying and Wen-
liang Du and Heng Yin and Gautam Nagesh Peri. Code
injection attacks on html5-based mobile apps: Char-
acterization, detection and mitigation. In Proc. ACM
SIGSAC conference on computer and communications
security (CCS), 2014.

[55] Xposed. https://github.com/rovo89/Xposed.
Accessed 2022.

[56] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang,
Zheng Chen, Onur Mutlu, Wenguang Chen, and Xiaoy-
ong Du. TADOC: Text analytics directly on compres-
sion. The VLDB Journal, 30:163–188, 2021.

[57] Zihao Jin and Shuo Chen and Yang Chen and Haixin
Duan and Jianjun Chen and Jianping Wu. A Security
Study about Electron Applications and a Program-
ming Methodology to Tame DOM Functionalities.
In Proc. 30th Network and Distributed System Security
Symposium (NDSS), 2023.

A Sample Code for RAH Registration

A.1 Android RAHs

Listing 3 Sample Java Code of JavascriptInterface
// Register RAH in Java code
public class JSObject {

@JavascriptInterface
public void nativeMethod(String arg) {

...
}
...
webView.addJavascriptInterface(

new JSObject(), "jsObject"
);

}

Listing 4 Sample JavaScript Code of JavascriptInterface
// Invoke RAH in JavaScript code
jsObject.nativeMethod(arg);
window.jsObject.nativeMethod(arg);

Listing 5 Sample Java Code of WebViewClient
// Register in Java code
public class CustomizedClient extends WebViewClient {

@Override
public boolean onLoadResource(

WebView view, String url
) {

...
}

}

Listing 6 Sample JavaScript Code of WebViewClient
// Trigger in JavaScript code
location.href = "<new URL>";

• RaT-1. As Listing 3 shows, in order to register this type
of custom RAHs, the developers first add the annotation

https://us.shein.com/
https://us.shein.com/
http://zwdt.sh.gov.cn/govPortals/column/download/application.html
http://zwdt.sh.gov.cn/govPortals/column/download/application.html
https://world.taobao.com/
https://developer.apple.com/news/?id=edwud51q
https://developer.apple.com/news/?id=edwud51q
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content
https://github.com/marcuswestin/WebViewJavascriptBridge
https://github.com/marcuswestin/WebViewJavascriptBridge
https://github.com/alibaba/weex
https://github.com/alibaba/weex
https://web.whatsapp.com/
https://github.com/rovo89/Xposed


@JavascriptInterface to the methods that will be
registered as custom RAHs, then instantiate a Java object
containing these methods and finally call the method
addJavascriptInterface(Object obj, String name)

to inject it into the JavaScript runtime in WebView. The
first parameter of addJavascriptInterfacez is the
Java object to inject and the second is the name of the
injected JavaScript object.

As Listing 4 shows, in the web page opened in WebView,
the injected object is a global variable in JavaScript and
implicitly registered as a property of the window object.
After injecting the object, the methods with the annota-
tion @JavascriptInterface in the Java object are regis-
tered as the methods in the JavaScript object and can be
directly invoked as any normal JavaScript methods (as
the sample JavaScript code shows).

• RaT-2. As Listing 5 shows, in order to regis-
ter this type of custom RAHs, the developers in-
herit the class WebViewClient and override the event
handler methods in the class, and then instantiate
the customized WebViewClient and call the method
setWebViewClient(WebViewClient client) to set it in
WebView. The WebViewClient instance can be retrieved
by calling getWebViewClient method.

As Listing 6 shows, if the web page opened in
WebView triggers the events overridden in the customized
WebViewClient, such as navigating to another URL by
setting the value of location.href in the sample code,
the corresponding custom event handler method will be
invoked automatically, such as onLoadResource in the
sample code. The specific new URL should be built ac-
cording to the implementation of the customized handler
methods.

A.2 iOS RAHs
We focused on the three most commonly used types of

RAH in iOS apps:

• RiT-1. As Listing 7 shows, in order to regis-
ter this type of custom RAHs, the developers
will adopt the WKScriptMessageHandler proto-
col (like implementing an interface in other
languages such as Java) and implement the
userContentController:didReceiveScriptMessage:

method defined in the protocol. Then the developers
instantiate the WKWebViewConfiguration class as
the configuration of WKWebView, and call the method
addScriptMessageHandler:name: to add the cus-
tomized handler to the configuration as the custom RAH.
The parameter name is the name of the injected RAH.
After that, the developers instantiate and initialize a
WKWebView with the above configuration instance and

Listing 7 Sample Objective-C Code of WKScriptMessage-
Handler
// Register in Objective-C code
- (void)setupWKWebView{

WKWebViewConfiguration *configuration =
[[WKWebViewConfiguration alloc] init];

configuration.userContentController =
[[WKUserContentController alloc] init];

[configuration.userContentController
addScriptMessageHandler:self
name:@"nativeMethod"];

WKWebView *webView =
[[WKWebView alloc]

initWithFrame:self.view.frame
configuration:configuration];

}
// Handler method defined in WKScriptMessageHandler
- (void)userContentController:

(WKUserContentController*)userContentController
didReceiveScriptMessage:(WKScriptMessage*)message {
if ([message.name isEqualToString:@"nativeMethod"]) {

...
}

}

Listing 8 Sample JavaScript Code for WKScriptMessageHan-
dler
// Invoke in JavaScript code
window.webkit.messageHandlers.nativeMethod.postMessage();

Listing 9 Sample Objective-C Code of WebViewJavascript-
Bridge
self.bridge =

[WebViewJavascriptBridge bridgeForWebView:webView];
[self.bridge

registerHandler:@"nativeMethod"
handler:
^(id data, WVJBResponseCallback responseCallback) {

...
}

];

Listing 10 Sample Objective-C Code of DSBridge
@implementation JsObject
- (NSString *) nativeMethod:(NSString *) msg
{

...
}
@end
DWKWebView* dwebview =

[[DWKWebView alloc] initWithFrame:bounds];
[dwebview addJavascriptObject:[[JsObject alloc] init]

namespace:nil];

Listing 11 Sample JavaSrcript Code of DSBridge
var dsBridge=require("dsbridge");
var str=dsBridge.call("nativeMethod","arg");



then the RAHs can be invoked directly from the web
page in the WKWebView.

As Listing 8 shows, in the web page opened in
WKWebView, the RAHs can be invoked through the
window.webkit.messageHandlers object. The property
nativeMethod is as same as the name registered above.

• RiT-2. As Listing 9 shows, in order to register
this type of custom RAHs, the developers will
call the bridgeForWebView: method to initiate
WebViewJavascriptBridge and set the instance as
the property navigationDelegate of WKWebView and
then call the registerHandler:handler: method to
register an Objective-C block (like a closure or lambda
in other languages) as an RAH. The first parameter
is the name of the RAH used to invoke it from the
web page. All the registered handlers will be stored
in a variable named messageHandlers and can be
retrieved by the method [_base messageHandlers].
As the navigationDelegate of WKWebView, the
WebViewJavascriptBridge instance can intercept the
navigation and requests in the WKWebView.

In WebViewJavascriptBridge, the RAHs will not be in-
jected into WKWebView when it is created. As Listing 1
shows, only when the URL specified by the developers is
requested in the web page using iframe, intercepted and
verified by the WebViewJavascriptBridge instance, the
method injectJavascriptFilewill be invoked to inject
the bridge object to the JavaScript runtime in WKWebView.
The value of WVJBIframe.src is the specific URL to trig-
ger the injection which can be customized in the app and
the same URL must be used in the web page.

• RiT-3. As Listing 10 shows, in order to register
this type of custom RAHs, the developers will in-
stance the DWKWebView class which is a sub class of
WKWebView instead of WKWebView itself and call the
addJavascriptObject:namespace: method to add an
Objective-C object as RAH to DWKWebView. All the
added RAHs will be stored in the member variable
javaScriptNamespaceInterfaces of DWKWebView.

As Listing 11 shows, in the web page opened in
DWKWebView, the web page require the JavaScript library
of DSBridge and use it to invoke the custom RAHs. The
names used to invoked RAHs are as same as the method
names defined in the Objective-C object.


	Introduction
	Background
	QR Code
	In-App QR Code Scanning
	Remotely Accessible Handlers
	Custom RAHs in Android Apps
	Custom RAHs in iOS Apps


	Medusa Attack
	Attack Overview
	Attack Model
	Attack Steps
	Web Access Triggering
	Parameter Tampering
	RAH Invoking


	Vulnerable App Detection
	Detection Workflow
	RAH Presence Analysis
	RAH Registration Analysis
	Insecure QR Code Reader Identification
	Exploit Construction
	Malicious QR Code
	RAH Invoking Script


	Evaluation
	Datasets
	Experiment Setup
	Analysis of Built-in QR Code Readers
	Analysis of Custom RAHs
	Vulnerability Exploitation
	Analysis Accuracy
	Case Studies
	Authentication Token Leak
	Denial-of-Service Attack

	Manual Effort Required

	Countermeasures
	Related Work
	Conclusion
	Sample Code for RAH Registration
	Android RAHs
	iOS RAHs


