
Open Sesame! Web Authentication Cracking via
Mobile App Analysis

Liu Hui(B), Zhang Yuanyuan, Li Juanru, Wang Hui, and Gu Dawu

Computer Science and Engineering Department,
Shanghai Jiao Tong University, Shanghai, China

Abstract. Web authentication security can be undermined by flawed
mobile web implementations. Mobile web implementations may use less
secure transport channel and enforce less strict brute-force-proof mea-
sures, making web authentication services vulnerable to typical attacks
such as password cracking. This paper presents an in-depth penetration
testing based on a comprehensive dynamic app analysis focusing on vul-
nerable authentication implementations of Android apps. An analysis of
Top 200 apps from China Android Market and Top 100 apps from Google
Play Market is conducted. The result shows that 71.3% apps we analyze
fails to protect users’ password appropriately. And an experiment carried
out among 20 volunteers indicates that 84.4% passwords can be cracked
with the knowledge of password transformation process.

Keywords: Android apps; Web authentication; Password cracking

1 Introduction

As the prevailing of mobile smart devices, entry of web authentication is mi-
grating from browsers to mobile apps. Many apps, however, do not implement
secure authentication process and thus are vulnerable to typical web attacks
such as password cracking. Therefore, the security of mobile web is significantly
weakened compared to that of traditional web. With millions of apps released
nowadays, it is essential to shed light on the status quo of how mobile web
authentication processes are handled by those apps.

Previous studies has revealed many aspects of vulnerable implementation in
Android apps that affect remote web authentication, especially on cryptographic
misuses [2,4] and insecurity of user and session authentication [3]. However,
they either rely on manual reverse engineering or only concern about simple
vulnerabilities such as using hard-coded key. In this paper, we mainly consider
two general types of web authentication vulnerabilities exposed by mobile apps
concerning mobile web authentication implementations.

One is the transport channel downgrade vulnerability. Services serving for
both mobile and web apps are most likely to use the same identity database, since
maintaining separate databases is profitless and resource-consuming. But they
would offer different interfaces when dealing with users from different platforms,
out of the consideration of optimizing user experience and usability. That is,

the authenticator1 sent to server is the same for both mobile and web apps,
while the transport channel of the authenticator can be diverse. The less secure
channel that mobile app uses can result in the authenticator leakage, which
opens a door for attackers to attack the web authentication. Web authentication
security is completely compromised if the transformation process is weak enough
such that an attacker can reveal the corresponding password simply knowing
the authenticator. If the password can not be deduced from the authenticator at
once, with the knowledge of the transformation process obtained by app analysis,
an attacker can still launch an off-line password brute-forcing attack, trying all
possible passwords until the output of the transformation process matches the
objective authenticator, which manifests the correct password.

The other vulnerability is the CAPTCHA bypass defect. When an attacker
has no access to a user’s authenticator, she may actively launch a password
guessing attack, pretending to be the user and trying possible passwords until
getting a correct response from server. Since this is a well-known on-line attack,
a countermeasure involving CAPTCHAs is proposed. Nevertheless, for mobile
apps, the enforcement of this measure can be omitted, which makes this kind
of attack possible again. With the knowledge of the transformation process, the
corresponding authenticators that may be accepted by the server are successfully
generated.

2 Inferring Authentication Process via App Analysis

As described above, the key factor to successfully launch both the off-line and
on-line brute-forcing/password guessing attack is the ability of transforming the
guessed passwords to authenticators. If the generated authenticator matches the
objective, the password is cracked. In this section, we introduce the way how to
get a sketch of the authentication process via app analysis.

We need to analyze apps to get an overview of what apps have done to the
password. And we only concern about the authentication process part of an
app. Therefore, our general idea of analyzing an app is (1) running the sign-
in process, (2) logging method call traces and specified parameters, and (3)
getting the sketch of the transformation process by mapping the input-output
relationship and profiling critical method calls. Figure 1 depicts the analysis
process. We use appium [1] to automatically run the app’s login process, filling
in the pre-chosen username and password. Then an instrumented Dalvik VM on
which the app is running is used to log down the method call trace and specified
method parameters. At last, we extract these logs and abstract the semantic
information of the transformation process.

3 Testing Results

Using the method introduced in Section 2, we analyzed 100 top free apps from
Google play and 200 top free apps from China Android Market. We successfully

1 During user authentication, an app typically receives a password, encodes or encrypts
it, and sends the result together with other data to a remote web server. We let
authenticator denote the result for the rest of this paper.

Outputs

Method

call trace

Extracted

Strings

PC

W
e

b
D

ri
v
e

r
C

o
n

tr
o

ll
e

r

appium

UiAutomator

controller

(Android)

UiAutomator

command

client

ets = driver.findelebyid()

ets[0].settext(137)

ets[1].settext(asdf)

ele = driver.findelebyid()

ele.click()

WebDriver Script

ResultsUiAutomator

Command

Server

Instrumented

DVM

Fig. 1. The process of app analysis.

analyze 209 apps2 and classify them into four categories and nine types according
to the type of transformation process, as listed in Table 1. The category basically
matches discoveries found in [3].

Table 1. Summary of the analysis results.

Type of Transformation Process
China Android Market Google Play Market

HTTP HTTPS* HTTPS** HTTP HTTPS* HTTPS**

Trivial Plaintext 44 19 8 1 8 42
Transformation Encoding 2 0 0 0 1 0

One-time MD5 21 8 5 0 0 0
Hash Fixed-salt MD5 6 0 0 0 0 0

Multi-time hash 3 0 0 0 0 0

Symmetric AES/DES with hard-coded key 24 7 2 0 0 0
Encryption AES/DES with randomly generated key 1 0 0 0 0 0

Asymmetric RSA/ECB/NoPadding 3 2 0 0 0 0
Encryption RSA/ECB/PKCS1Padding 2 0 0 0 0 0

Sum 106 36 15 1 9 42
* apps using HTTPS connection and inadequately validating the certificates.
** apps using HTTPS connection and correctly validating the certificates.

Overall, 149 apps (71.3%) fail to provide secure user authentication. Nearly
all apps from Google Play use the same type of authentication process, while
apps from China Android Markets use different types of transformation process.
And for those apps using HTTPS, 45 out of 92 apps (48.9%) fail to validate the
certificate correctly, resulting apps vulnerable to active attackers.

The distribution of transformation process type differs between apps from
Google play and China Markets, and apps from China Markets are exposed
to more security threats than ones from Google Play. Apps from Google Play
seem to obey the same specification. They send password directly to the server.
The security totally relies on a secure channel, mostly implemented as HTTPS
connections. However, apps from China Markets are completely different. On
one hand, most apps send the authentication material through HTTP. On the

2 Other apps are either packed or involved with native APIs, in which case manual
intervention is needed.

other hand, apps try to protect password by making transformations (security
by obscurity), which, as we will show in Section 4, basically enforce no security.

Case Study. DangDang is the Chinese most popular online bookstore. While
its web entry sends user’s password in plain text via a secure TLS channel, its
Android client sends the authentication information without any protection.

In terms of CAPTCHA Bypass, on the website of Meilishuo, which is the
largest fast fashion e-commerce platform in China, a group of pictures are pre-
sented for users to click and rotate each of them until all the pictures are in
the right position when a user logs in. This is a pretty strong approach to de-
fend against password guessing attacks. Nevertheless, the entry that its mobile
app provide totally breaks this defense. It neither presents any CAPTCHAs
nor limits the times a user can submit the authentication information, making
the on-line password guessing attack unimpeded. This weakness also appears in
Sogou, Jiayuan, Mia etc.

4 Password Cracking Cost Measurement

To intuitively demonstrate the consequences of password cracking enabled by the
knowledge of password transformation process, we recruit 20 volunteers to ran-
domly use those 209 apps and launch the authentication process in a controlled
network environment. We collect 180 authenticators and conduct the password
cracking attack.

The attack cost of some transformation type is trivial, such as encoding and
symmetric encryption, since password can be directly calculated from authen-
ticator by inversing the transformation process. As for hash and asymmetric
encryption type, cracking is needed. We let two GPU cards (Telsa K20c, 4800
MB global memory, 2496 CUDA cores, 706 MHz clock rate; Quadro K620, 2047
MB global memory, 384 CUDA cores, 1124 MHz clock rate) work together to
crack hash. And we use an Intel Xeon Processor E5-2643v3 with 20M smart
cache and 3.4GHz base frequency CPU to run the RSA calculation. Finally, we
successfully recover 84.4% of the passwords in 2 days.
Acknowledgments. This work is supported by the Major program of Shanghai
Science and Technology Commission (15511103002).

References

1. Appium automation for apps. http://appium.io/. Accessed April 20, 2016.
2. Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza

Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on
android. In NDSS, 2012.

3. Fangda Cai, Chen Hao, Wu Yuanyi, and Zhang Yuan. Appcracker: Widespread
vulnerabilities in user and session authentication in mobile apps. In IEEE Mobile
Security Technologies. IEEE, 2015.

4. Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: An analysis of
android ssl (in) security. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 50–61. ACM, 2012.

http://appium.io/

	Open Sesame! Web Authentication Cracking via Mobile app Analysis

