
Oh-Pwn-VPN! Security Analysis of
OpenVPN-based Android Apps ?

Qi Zhang, Juanru Li, Yuanyuan Zhang(B), Hui Wang, and Dawu Gu

Shanghai Jiao Tong University, Shanghai, China

Abstract. Free VPN apps have gained popularity among millions of
users due to their convenience, and have been massively used for access-
ing blocked sites and preventing network eavesdropping. As a popular
open-source VPN solution, OpenVPN is widely used by developers to im-
plement their own VPN services. Despite the prevalence of OpenVPN,
it can be insecurely customized and deployed by developers in lack of
security guide.
In this paper, we perform a systematic security analysis of 84 popular
OpenVPN-based apps on the Google Play store. We analyze the deploy-
ment security of OpenVPN on Android from the aspects of client profile,
code implementation, and permission management. Our experiment re-
veals three types of misconfigurations that exist in several apps: insecure
customized protocols, weak authentication at the client side, and incor-
rect file permissions on Android. The misconfigurations found by us can
lead to some serious attacks, such as VPN traffic decryption and Man-
in-the-Middle attacks, endangering millions of users’ privacy. Our work
shows that, although OpenVPN protocol itself has withstood security
analysis, insecure custom modification and configuration can still com-
promise the security of VPN apps. We then discuss potential causes of
these misconfigurations and make practical recommendations for devel-
opers to securely deploy OpenVPN services.

Keywords: OpenVPN, Android Apps, Security Assessment

1 Introduction

Security concerns about network communications of Android apps have been
raised in recent years. A straightforward protection approach is to use a virtual
private network (VPN) as a secure connection between the device and VPN
server over the Internet. VPN services are useful for securely accessing sensitive
content in a public network and are commonly used to circumvent censorship.
On Android, mobile app developers can use native support to create VPN clients

? This work was partially supported by the Key Program of National Natural Sci-
ence Foundation of China (Grants No.U1636217), the Major Project of the National
Key Research Project (Grants No.2016YFB0801200), and the Technology Project
of Shanghai Science and Technology Commission under Grants No.15511103002.

2

through the Android VPN Service class [2]. Thus many apps legitimately use
the VPN permission to offer online anonymity by intercepting and taking full
control of the network traffic on device.

However, the use of VPN within an Android app is a new scenario for most de-
velopers. Previous researches [22,25,26] have revealed several privacy issues and
security flaws in implementations of these VPN services and applications. The
most serious security flaw found is the usage of insecure VPN tunneling protocols.
Various VPN tunneling protocols are used among different Android VPN-based
apps. Despite promising online anonymity and security to their users, many VPN
apps still implement unencrypted tunneling protocols. Since implementing a se-
cure VPN tunneling protocol from scratch is sophisticated, a group of VPN apps
utilize OpenVPN, the most popular open-source VPN solution [4,17], to build
their own VPN services. Because OpenVPN is open-source and has been tested
by security analysts over a long period of time, it is generally considered as a
secure VPN solution and is widely used on both desktop and mobile platforms.

Although OpenVPN-based apps (in short, OpenVPN apps) are believed to
guarantee better security and anonymity compared to those apps with home-
brewed tunneling protocols, unfortunately, real world OpenVPN apps are not
always secure. On Android platform, how OpenVPN should be incorporated and
deployed in these VPN apps is not regulated. Android developers may misuse
OpenVPN or modify the original execution flow of it and thus lead to an insecure
VPN service.

In this paper, we conduct an in-depth misuse analysis on widely used An-
droid OpenVPN apps. To unveil those misuses, we focus on the variation of
OpenVPN apps’ tunnel implementations and deployment policies. Our analysis
finds that due to three kinds of misuses, the security of the VPN tunnel is weak-
ened or even completely broken. The first one is misuse of modified OpenVPN
protocol. Developers add custom operation to the standard OpenVPN protocol
implementation, as we called custom obfuscation, for the purpose of obfuscat-
ing the VPN traffic. The VPN connection is configured to replace the standard
OpenVPN encryption with custom obfuscation, and finally leads to an insecure
VPN tunnel. The second one is weak authentication at the client side, which
leaves the identity of server insecurely validated and finally induces a Man-
in-the-Middle attack. The third one is incorrect usage of native library, which
assigns an improper privilege to the management interface and finally causes a
Denial-of-Service threat. More seriously, the implementation and deployment of
these apps cannot be modified by users. Users are generally unaware of relevant
security flaws, and can be easily attacked if using such apps to protect their
network communications.

We analyzed 84 popular free OpenVPN apps in Android market and found
that such misuses widely exist. Among them, 11 apps replace the standard en-
cryption of OpenVPN with custom obfuscation. Due to vulnerable key agreement
of the custom obfuscation, VPN traffic can be completely decrypted by attack-
ers. Seven of the apps are susceptible to Man-in-the-Middle (MITM) attacks as
a result of weak authentication at the client side. Four of the apps suffer from

3

Denial-of-Service attacks by reason of unprotected management interface. Our
study indicates that even if the VPN apps adopt an robust VPN library, sit-
uations of insecure deployment are still common and severely threaten users’
security and privacy.

The main contributions of our work are summarized as follows:

– We summarize how OpenVPN is incorporated and utilized by Android VPN
apps. We conclude the typical usage of OpenVPN on Android and spot de-
velopers’ customizations by analyzing popular OpenVPN apps and auditing
source code of forked OpenVPN projects.

– We conduct an in-depth analysis of OpenVPN misuses. Our assessment
methodology is able to find misconfigurations of OpenVPN apps in the as-
pects of client profile, code implementation, and permission management.

– We uncover a typical previously unknown security issue in OpenVPN apps.
Specifically, we find that some apps add a new tunnel protocol into Open-
VPN following the security-by-obscurity policy: these implementations of
tunnel modify the original protocol to hide the feature and evade network
censorship technologies such as deep packet inspection (DPI). However, our
study demonstrates that the modified protocols often adopt vulnerable key
agreement that leads to complete insecure communications.

2 Background

2.1 OpenVPN Security Mechanisms

The goal of a VPN system is to provide private communications. To secure the
network traffic, OpenVPN has implemented many features for authentication,
encryption and management. OpenVPN utilizes SSL as the underlying cryp-
tographic layer for authentication and encryption. There are two channels in
OpenVPN: the control channel for authentication and key exchange, and the
data channel for traffic encryption. Moreover, OpenVPN also provides an inter-
face for managing the VPN process.
Authentication In the control channel, OpenVPN has two modes of authenti-
cation [16]: a) Static key mode static keys are pre-shared by client and server.
All traffic are encrypted by the same static key, thus this mode cannot provide
perfect forward security. b) SSL/TLS mode A mutual authentication is estab-
lished inside an SSL session. Most security related features are implemented in
this mode.

In SSL/TLS mode, the identity of server is validated by its certificate the
same way as in HTTPS. Meanwhile, multiple ways of client authentication are
provided by OpenVPN. The client can be authenticated by the traditional user-
name/password mechanism, by client certificate, or by the combination of these
two types. To mitigate possible vulnerabilities in the TLS handshake, e.g., the
famous Heartbleed bug [7], additional HMAC of TLS control channel packets can
be required by enabling tls-auth option. After the authentication, session keys
are generated by Diffie-Hellman key exchange and updated periodically.

4

Encryption After authentication and session key generation, OpenVPN uses
data channel to tunnel the actual network traffic. Encrypt-then-Mac scheme is
used to protect data channel packets. Specifically, the encryption and HMAC
algorithm are determined by option cipher and auth in the configuration file.
The cipher algorithm used for data encryption must be specified at both the
client and the server side.

Management OpenVPN provides a management interface [11] that allows itself
to be administratively controlled from an external program via a TCP or UNIX
domain socket. Control commands such as setting proxy address, providing pass-
words or suspending VPN service can be transmitted through the management
interface.

2.2 OpenVPN on Android

Since Android version 4.0, the VpnService API [2] is provided for developers to
build their own VPN solutions. This API returns a descriptor of a virtual network
interface (the tun interface) for apps to read and modify all the network traffic
on device. While the VpnService API makes it convenient for developers to build
VPN services, malicious apps may use this API to eavesdrop network activity of
other apps. Android system takes several actions to prevent the abuse of VPN
Service API. To obtain the VPN interface by using this API, apps have to request
the BIND VPN SERVICE permission, and the first time a VPN connection is
created, Android alerts users by displaying system dialog and notification.

Typically, OpenVPN is ported to Android platform as a shared library. For
instance, ics-openvpn [10], a popular open-source OpenVPN app, implements
OpenVPN as an ELF shared library libopenvpn.so. The shared library is invoked
by a native process on Android (the native layer). Other functions of the app
are usually implemented at the Java layer. To handle the Inter-Process Commu-
nication (IPC) between the Java layer (i.e., the UI thread) and the native layer
(i.e., the OpenVPN process), UNIX domain socket is adopted to implement the
management interface.

The execution flow of an OpenVPN app is depicted in Figure 1 and divided
into four steps: profile assembly, VPN initiation, management interaction and
VPN connection. The client profile for the OpenVPN app is retrieved in various
ways (step 1). Based on the configuration file, OpenVPN process is initiated at
the native layer (step 2), then the Java layer controls the OpenVPN process via
the management interface (step 3) and the VPN tunnel is established by the
OpenVPN process (step 4). Details of these steps are described as follows:

Step 1: The VPN client assembles a configuration profile for connecting to a
remote VPN server. Note that this step can be implemented differently by VPN
providers. The client can directly obtain the configuration from the APK file,
or the client retrieves VPN server address from a server (the profile server), and
then assembles a complete configuration at the client side, or the configuration
is fully downloaded from the profile server. Other options such as file location of
the management interface and protocol used (TCP or UDP) are also included

5

Fig. 1: A typical workflow of Android OpenVPN apps

in the configuration profile. An example of Android OpenVPN client profile is
shown in Figure 2.

Step 2: The OpenVPN library is loaded and invoked by a native process.
Based on the client profile, the OpenVPN process is initiated. Network param-
eters of the tun interface such as IP address, DNS server are pushed from the
VPN server. As shown in Figure 2, the management-client option is enabled,
thus OpenVPN process acts as the client and the management interface is cre-
ated by the Java layer. The management interface is created in the app’s private
directory (e.g., /data/data/pkg.name/cache/) and is waiting for connection.

Step 3: The OpenVPN process connects to the management interface and
then it is controlled by the UI thread. To utilize the Android VpnService API, the
Java layer sends several commands to the OpenVPN process to gather network
parameters of the tun interface. After the call of VpnService, the descriptor of
the tun interface is sent from the Java layer to the native layer and the descriptor
of the link to VPN server is sent in the reverse direction.

Step 4: The OpenVPN process has obtained two descriptors for controlling
the traffic between the device and the remote server. After that, network traffic
on device is tunneled inside the VPN connection.

management /data/data/pkg.name/cache/mgmtsocket unix

management-client

client

remote vpn.server.address

cipher BF-CBC

ca ca.crt

cert client.crt

key client.key

Fig. 2: An example of Android OpenVPN client profile

6

3 Attacking OpenVPN Apps

3.1 Adversary Model

Our adversary model consists of two types of attackers:

1. A network attacker can passively monitor the traffic, or can actively in-
tercept and modify network connections between the client and OpenVPN
server. Mobile devices are commonly used under different network environ-
ments. Users may connect to a free public Wi-Fi for convenient Internet
access, and then protect network activity by using a VPN app. The public
Wi-Fi could be controlled by a network attacker, thus the VPN traffic can
be observed and manipulated by the attacker.

2. A malicious app that attempts to attack OpenVPN apps is installed on
the user device. Apps installed on the user device cannot be all trusted.
Users may install apps from third-party app markets, where the attacker
can repackage malicious payload into popular apps and distribute them.

3.2 Vulnerabilities and Attacks

From the attacker’s perspective, the profile distribution (step 1) is the critical
step for discovering vulnerabilities in the execution flow of OpenVPN apps. Most
security related information can be found from the VPN client profile, which
can be obtained after step 1. The client profile provides all the prerequisites for
attacking the management interaction and the VPN connection procedure, such
as the address of VPN server, cipher algorithm, authentication types and file
location of the management interface. Without these critical information, it is
impossible for attackers to find vulnerabilities in other steps of the OpenVPN
workflow.

Free VPN apps indeed expose VPN client profiles to attackers, which makes
conducting a certain attack feasible. Most free VPN apps do not require user
registration, or some even provide same private key for different users [29]. Any
user can obtain a valid client profile, by just connecting to the VPN servers in
these apps. The attacker can utilize the profile distribution step of these apps
on his own device to collecting the configuration profiles of VPN clients. Except
client credentials like certificates and private keys which may be user-unique,
the attacker can obtain the same configuration as other normal users due to
the same client implementation and server logic. After that, the attacker can
explore configuration profiles and client implementations to find vulnerabilities
and attack specific VPN apps.

Based on our adversary model and the leakage of client profile, we present
three types of attacks against OpenVPN apps, which compromise the confiden-
tiality, authenticity and availability of the OpenVPN service. These attacks are
caused by insecure customization and deployment of OpenVPN apps, not by
OpenVPN protocol itself.

7

1. Traffic Decryption Some VPN service providers claim that they use some
proprietary VPN protocols or Anti-DPI [9,21] technology to prevent VPN
traffic from being identified or blocked. Also, a few custom OpenVPN patches
intended to obfuscate the OpenVPN traffic and bypass firewalls have been
proposed in the OpenVPN community [19] and GitHub [20]. We identify a
typical misuse that developers disable the encryption of OpenVPN and use
custom obfuscation to replace the standard encryption. These custom ob-
fuscations are commonly implemented by scramble operations such as XOR,
and adopt vulnerable key agreements (e.g., hard-coded keys). Thus the mis-
configuration of replacing standard encryption with custom obfuscation will
lead any passive network attacker to completely decrypt the VPN traffic.
Details of custom obfuscation and its misconfiguration are discussed in Sec-
tion 5.1.

2. Man-in-the-Middle Attack The publicly available client profiles of these
free VPN apps may lead to possible MITM attacks. This MITM attack hap-
pens when the client certificate is signed by the same CA of server certificate
and the usage of server’s certificate is not verified at the client side. A valid
client certificate and private key are sufficient to conduct this MITM attack
if the OpenVPN app is misconfigured. An active network attacker can trun-
cate the connection request from the client, then claim to be the server by
using a valid client certificate. OpenVPN provides several ways to defend
this attack [13], however, developers may not enable these security features,
leaving their apps vulnerable to this attack.

3. Denial of Service Besides network attackers, threats can also come from a
malicious app at the client side. Since Android is a multi-app platform, im-
proper permission of the management interface may allow other apps on the
same device to control the OpenVPN process, prevent the normal connection
and cause a Denial-of-Service attack.

4 Methodology

This section describes our approach of analyzing the deployment security of
Android OpenVPN apps in consideration of the three attacks we proposed. Fig-
ure 3 illustrates the procedure of our analysis. In detail, our approach consists
of three phases: OpenVPN identification, profile collection, and security assess-
ment. Most prior studies on security and privacy of VPN services focus on the
network traffic. However, security flaws in code implementation and permission
management can also break the security of OpenVPN. We propose a comprehen-
sive assessment methodology that evaluates OpenVPN apps from three aspects:
client profile, code implementation and permission management.

4.1 OpenVPN Identification

Given a set of Android VPN permission-enabled apps, we need to determine the
tunneling protocols used by them. We propose two general methods to identify

8

Fig. 3: An overview of how we analyze the security of OpenVPN apps

the usage of OpenVPN among these VPN apps: native code filter and network
traffic identification.

1. Native Code Filter This method filters OpenVPN apps by inspecting
the symbol table of native libraries. Since cryptographic operations inside
VPN service are CPU-intensive, VPN protocols on Android are commonly
implemented in native code. If the OpenVPN library is incorporated in the
native libraries of the app, function names and other symbol information
from OpenVPN source code are preserved in the binary code. By searching
meaningful strings like function name openvpn encrypt in the symbol table
of shared library files, we can quickly determine whether OpenVPN is used
in the native code. This static method is efficient, and is fully automatic.
If symbols in the library are stripped, or developers intentionally obfuscate
the binary code, this method cannot detect the usage of OpenVPN, thus we
need runtime traffic identification.

2. Network Traffic Identification This method focuses on investigating net-
work activity of apps and treats APK files as a black box. After capturing
the network traffic of VPN apps, the tunneling protocol can be identified by
using protocol parsers such as Bro [3]. The accuracy of this method depends
on the precision of the protocol parser. As reported in the work by Ikram
et al. [25], a large portion of the tunneling protocols used by VPN apps
cannot be recognized by protocol parsers. If a VPN app has obfuscated its
traffic by modifying the protocol implementation, common protocol analysis
tools are incapable of identifying its network traffic. While this method can-
not detect custom obfuscations and needs manual interference to establish
VPN connection in apps, it helps us to find the usage of typical OpenVPN
implementation regardless of the binary code information.

In this step our goal is to identify OpenVPN apps as many as possible,
therefore we combine these two methods. We adopt native code filter as the
main detection method, which narrows the assessment scope automatically, and
is capable of detecting custom OpenVPN implementations. Then we utilize net-

9

work analysis tools for those apps that are not identified by our native code
filter.

4.2 Profile Collection

As discussed before, the profile distribution of different apps can vary from each
other, therefore it is complicated to collect client profiles from profile servers.
Instead, for each OpenVPN app, we gather the runtime arguments of the Open-
VPN process to figure out the client profile.

OpenVPN allows options to be provided either by the command line ar-
guments or by a configuration file. Actually the configuration file is used as
a command line option –config. Therefore, by inspecting the app’s native pro-
cess and its command line arguments (i.e. /proc/PID/cmdline), we are able to
extract the client connection configuration of VPN apps.

We build a semi-automatic tool for collecting client profiles of OpenVPN
apps. While the VPN service is running, this tool automatically parses the ar-
guments of OpenVPN process belong to each VPN app, then it records all the
configurations or directly extracts the configuration file on device. The necessary
manual part is that for each app we need to actively connect to the VPN server
and approve the VPN connection in the Android system dialog.

4.3 Security Assessment

(a) Same CA for client and server (b) Different CAs for client and server

Fig. 4: Two types of CA trust model

1. Client profile We implement a parser of OpenVPN profile to extract all the
options from configuration files which we collect from different apps. Then,
we perform a statistical survey of the usage of security related options. Par-
ticularly, we inspect the cipher algorithm used in OpenVPN apps (cipher),
whether the client is authenticated by passwords (auth-user-pass), by cer-
tificates (cert), or additional TLS authentication is used (tls-auth). When

10

client and server are authenticated by certificates, there are two types of CA
trust model, as shown in Figure 4. The certificate of client and server can be
signed by the same CA (Figure 4a), or by different CAs (Figure 4b). Under
the CA model in Figure 4a, if the usage of certificate is not checked at the
client side, an active network attacker can impersonate a valid server by us-
ing another client certificate retrieved from the OpenVPN app. By checking
whether the client certificate (cert) is signed by the CA (ca), we determine
the CA model of authentication in the OpenVPN app. If the certificate of
client and server is signed by the same CA, we then examine whether options
for MITM prevention (remote-cert-tls, ns-cert-type) are applied.

2. Code implementation We focus on evaluating the implementation of cus-
tom features added for the purpose of obfuscating OpenVPN traffic. By
selecting options that exist in these configuration profiles but not in the offi-
cial manual page of OpenVPN [12], we are able to filter the custom features.
In order to understand these custom obfuscation behaviors, we perform re-
verse engineering on the modified OpenVPN library. To target the obfus-
cation operations, we concentrate on the code implementation located after
the original cryptographic procedure in OpenVPN, and before the actual
network send/receive logic, e.g., process outgoing link or read incoming link
functions in OpenVPN source code [17]. Utilizing the source code of Open-
VPN and comparing it with the decompiled code generated by IDA Pro [8],
we identify custom obfuscations added in these OpenVPN apps. After that,
the obfuscation key is examined in the client profile.

3. Permission management File location of the management interface can
be obtained from the client profile. While the OpenVPN service is running,
We use a script to automatically examine the permission of its management
interface. The permission management is vulnerable if the management in-
terface is world-accessible.

5 Result and Security Analysis

We analyzed top 200 VPN apps collected from Google Play in May 2017. We
utilize google-play-scraper [6] and gplaycli [5] to select and download VPN apps.
Google-play-scraper provides the feature of searching popular apps matching a
certain term, and gplaycli is able to automatically download a list of APK files
from the Google Play store. Among the top 200 VPN apps on Google Play, 111
apps using OpenVPN were identified by our methods. We successfully analyzed
the client deployment status of 84 OpenVPN-based apps. The remaining 27 apps
were not evaluated due to the need of in-app purchase or the failure of server
connection. All the apps were tested on a rooted Moto G with Android 7.1.

The main vulnerabilities we found are summarized in Table 1. 11 of the ana-
lyzed apps replace the standard OpenVPN encryption with custom obfuscation,
thus the VPN traffic can be decrypted by network attackers. There are seven
apps vulnerable to MITM attacks due to their lack of certificates usage validation
or using the static key mode. Four of the OpenVPN apps leave the management

11

interface unprotected, which may lead to Denial-of-Service attacks. The maxi-
mum number of installs among the apps belong to each misconfiguration type is
also listed in Table 1.

Table 1: Main vulnerabilities we found in OpenVPN apps
Category Vulnerability Type # of Apps Max Installs Consequence

cipher
replacing encryption with obfuscation 11 1M traffic decryption

encryption disabled 2 1M traffic in plain text

auth
lacking cert usage validation 6 1M MITM

static key mode 1 100K traffic decryption, MITM

management unprotected interface 4 1M DoS

5.1 Insecure Encryption

Insecure Cipher Algorithm We found that 30 OpenVPN apps use the default
cipher algorithm BF-CBC. As a 64-bit block cipher, Blowfish is vulnerable to the
SWEET32 attack [23], thus it is no longer recommended. Despite the publication
of this attack, Blowfish is still the default cipher algorithm of OpenVPN [12].
This insecure-by-default setting may influence the security of OpenVPN deploy-
ment.

Meanwhile, two of the analyzed apps explicitly set cipher to none, which
disables encryption and transfers all traffic in plain text. When using option
cipher none , OpenVPN has a warning in its standard output. However, since
Android users cannot notice this warning, they will be unaware of this insecure
setting.
Replace Encryption with Obfuscation The usage of custom obfuscation
patches in the 84 OpenVPN apps is described in Table 2. Obfuscation is realized
by adding extra encryptions of the OpenVPN packet data, and the key for
obfuscation needs to be configured the same at both client and server side. We
notice that 13 apps use RC4 to obfuscate the OpenVPN traffic, and the key of
RC4 is set to the IP address of VPN server. Obfuscation itself does not weaken
the security of OpenVPN. However, 11 of them use custom obfuscation to
replace standard encryption by setting cipher to none , which completely
breaks the security of OpenVPN. Besides, nine apps use XOR-based obfuscation
while four of them choose the same obfuscation key. There is only one app that
uses two’s complement to obfuscate the traffic.

Furthermore, we perform a thorough analysis of the most commonly used cus-
tom obfuscation option antidpi. Before OpenVPN’s network send/receive logic,
a custom RC4 encryption/decryption of the whole OpenVPN packet is added.
The key of RC4 is determined by the argument of antidpi remote. The crux de-
ployment security problem is that 11 apps disable the standard encryption of
OpenVPN and set a poor key for the RC4 encryption. OpenVPN’s own encryp-
tion is disabled by setting cipher none and the key of RC4 is set to server’s IP

12

Table 2: The usage of custom obfuscation patches
Obfuscation Type Option Name Obfuscation Key # of Apps

RC4 antidpi,antidpi remote Server’s IP address 13

XOR obsecure key,scramble,link-key Random string 9

Two’s complement ob-key - 1

address by setting antidpi remote. In this case, users and developers who believe
network data is protected will be in fact fully exposed to threats. Any passive
attacker that obtains network traffic of these apps can completely decrypt the
data and recover users’ online activity, e.g., the attacker can learn all the HTTP
traffic.

We investigated several forked OpenVPN projects to analyze potential causes
of the misconfiguration of custom obfuscation. A custom obfuscation patch called
xorpatch in OpenVPN community forum claims that encryption of the scramble
patch is secure thus ‘it is OK to use cipher none’ [19]. Due to neglecting the
importance of encryption, the patch author gives an insecure demonstration of
configuration, which may mislead other developers to make the same mistake. In
addition, we audited some OpenVPN patches on GitHub [14,15,20]. All of them
are in lack of guide about how to set the key for obfuscation. Users may not
know how to set the correct patched options with OpenVPN’s original features,
thus weak arguments like using IP address as the key may occur.

5.2 Weak Authentication

Table 3: The usage of client authentication methods
Password Certificate TLS-auth # of apps√ √ √

18

×
√ √

4√
×

√
8√ √

× 29

×
√

× 10√
× × 14

Table 3 presents the usage of different client authentication methods of
OpenVPN apps. Different security levels are provided by these authentication
methods. Password+Certificate+TLS-auth is the most secure method, which is
adopted by 18 apps, while 14 apps use less secure Password only authentica-
tion. Besides, one app is found to use static key mode. In this mode OpenVPN
connection can be decrypted and MITM-ed as the key is shared by different
users.

13

We observe that Password+Certificate is the most used type. In our results,
61 apps use certificate-based authentication and 39 of them use the same CA
trust model. It is convenient to use the CA trust model in Figure 4a since the
CAs deployed at client and server side are the same. However, six apps lack the
validation of server certificate usage, which means a rogue client can conduct
MITM attacks on other clients.

The trust model in Figure 4b is immune to this attack due to different CAs
are used. To prevent this attack against the same CA model, extra validation of
server’s certificate usage (i.e., certificate for server only) is needed. OpenVPN
has provided several options like remote-cert-tls to require an explicit key usage
of peer certificates. These security protections are not enabled by default since
in most case private keys are not leaked. While for most free OpenVPN apps,
client certificates and private keys are publicly available, thus developers must
apply these options to prevent MITM attacks.

Due to lack of security awareness, developers of these free VPN apps usually
make their VPN client profiles public, or even provide the same client credential
for different users. While providing convenient VPN services, these VPN apps
leak the client profiles at the same time.

The insecure-by-default policy in OpenVPN may also cause this misconfigu-
ration. OpenVPN provides various of options, some are required for enabling the
basic VPN function, some are for security hardening purpose. Developers may
omit these complicated security protection options, leaving their OpenVPN ser-
vice insecure by default.

5.3 Unprotected Management Interface

In the circumstance of OpenVPN on Android, the management interface handles
the communication between native and Java layer. The problem is that, the
management interface itself does not have any authentication mechanism, thus
the file permission of the interface must be correctly set. Otherwise it can can
be exploited by other apps on the same device.

In our experiment, four of the analyzed apps set the permission of man-
agement interface world-accessible, i.e., srwxrwxrwx. Because the file location of
management interface can be inferred from the client profile, a malicious app
on the same device can exploit the insecure permission of the interface, and
access to it before the normal connection. The implementation of OpenVPN
management interface does not support multiplex, thus the first connection will
block others from accessing the interface. After the malicious app connects to
the management interface, the normal connection is blocked and this eventually
leads to a Denial-of-Service attack.

The misuse of Android UNIX domain socket has been analyzed by [28], here
we focus on OpenVPN and explore the causes of unprotected file permission. We
observe that management-client option is not used by the four apps, while all
other apps enable this option. The typical execution flow of OpenVPN is mod-
ified by disabling this option. When management-client is disabled, the native
process, not the Java process, acts as the server of UNIX domain socket. The

14

management interface is created at the native layer and the OpenVPN process
listens on the UNIX domain socket. We find that the default file permission of the
UNIX domain socket in OpenVPN is world-accessible because umask(0) is used
by OpenVPN [17]. To protect the UNIX domain socket and only allow specific
user to access the interface, developers need to enable the management-client-
user option, which specifies the file permission of the management interface.

On the other side, if management-client is enabled, the Java layer is respon-
sible for creating the management interface. At Java layer the security model is
supplied by Android Java VM and file is created with correctly protected default
permission. In a word, the different default file permissions of native layer and
Java layer result in this vulnerability.

6 Recommendations

Don’t use custom obfuscation to replace encryption. Custom obfusca-
tion is commonly implemented by simple scramble operations thus it is not
secure enough to replace the standard encryption of OpenVPN. The purpose of
obfuscation is to hide protocol metadata, not to protect the payload. For bypass-
ing network censorship, the OpenVPN team disapproves of custom patches and
suggests to use obfsproxy [18]. Another approach is to tunnel the VPN traffic in
common secure protocols like TLS or SSH.
Deploy countermeasures against MITM. OpenVPN provides different ways
to avoid the Man-in-the-Middle attack from an authorized client. Certificates can
be assigned with specific key usage and extended key usage. Options like remote-
cert-tls server or ns-cert-type server make OpenVPN clients accept server-only
certificates. Signing certificates for server and client with different CAs can also
prevent this MITM attack.
Set secure file permissions on Android. Since Android is a multi-app plat-
form, developers should protect their own files from being tempered by other
apps on the same device. File permission at Java layer is correctly protected by
default. However, at the native layer, developers should take their own respon-
sibility and use umask and chmod to securely protect their files.
Securely distribute client profiles. Developers should harden the client con-
figuration, protect the distribution of client profiles (e.g., transmit them via
email) and securely store them at the client side. Unique client credentials should
be generated for different users to prevent the abuse of public client profiles. To
achieve a better security level, VPN profiles can be encrypted or stored in An-
droid Keystore [1].

7 Related Work

Several studies have been working on the privacy and security of VPN services.
Appelbaum et al. [22] are the first to uncover the VPN traffic leakage problem
caused by misconfiguration of route tables. Perta et al. [26] extend their work and
analyze popular commercial VPN services. Their results reveal that the majority

15

of VPN services suffer from IPv6 leakage and DNS hijack attacks. Ikram et
al. [25] conduct a comprehensive privacy and security analysis of Android VPN
permission-enabled apps. Their study mainly focuses on investigating VPN apps’
manipulation of TLS traffic and behavior of tracking user privacy. Instead of
concentrating on network analysis, our work evaluates the security of VPN apps
from the aspects of security related configuration and code implementation at
the client side. Recently OpenVPN 2.4.0 has been audited and several security
issues have been found [27]. Our work reveals that, in addition to the flaws in
official implementations, developers’ custom modification and configuration in
VPN applications can also lead to severe security vulnerabilities.

There are some studies about the security of custom VPN protocols and
misuses of UNIX domain sockets on Android. Gutmann [24] gives a classic cryp-
tographic audience of the weakness of some custom VPN protocols. He suggests
to use standard-protocol-based VPN, such as OpenVPN and IPsec, while we
demonstrate that misuses of OpenVPN can still threaten the VPN communi-
cation. Shao et al. [28] conduct a systematic study of the misuses of Android
UNIX domain sockets. We analyze the causes of insecure permission of Open-
VPN management interface based on their work.

8 Conclusion

In this work, we focus on the client side deployment security of Android Open-
VPN apps. After summarizing the procedure of client deployment and VPN
connection, we present a security assessment methodology by evaluating the se-
curity of client profile, code implementation and permission management. The
configuration status of 84 popular OpenVPN-based apps on Google Play are
analyzed. To our best knowledge, we are the first to identify a typical misuse
of insecure custom obfuscation in several OpenVPN apps. Our experiment also
shows that MITM vulnerability and Denial-of-Service problem due to miscon-
figurations still exists in these apps. The misconfigurations are either due to
patch authors’ wrong advices and lacking of document, the ‘insecure-by-default’
OpenVPN configuration, or due to developers’ incorrect file permission setting
on Android. Finally we develop some practical recommendations for securing
the OpenVPN deployment.

References

1. Android keystore system. https://developer.android.com/reference/java/

security/KeyStore.html.
2. Android vpn service documentation. https://developer.android.com/

reference/android/net/VpnService.html.
3. Bro network security monitor. https://www.bro.org.
4. Detailed vpn comparison chart. https://thatoneprivacysite.net/

vpn-comparison-chart/.
5. Google play downloader via command line. https://github.com/matlink/

gplaycli.

https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/reference/android/net/VpnService.html
https://developer.android.com/reference/android/net/VpnService.html
https://www.bro.org
https://thatoneprivacysite.net/vpn-comparison-chart/
https://thatoneprivacysite.net/vpn-comparison-chart/
https://github.com/matlink/gplaycli
https://github.com/matlink/gplaycli

16

6. Google-play-scraper. https://github.com/facundoolano/google-play-scraper.
7. The heartbleed bug. http://heartbleed.com/.
8. Ida pro. https://www.hex-rays.com/products/ida/.
9. Nvpn antidpi. http://www.nvpn.net/. Accessed: 2017-07-21.

10. Openvpn for android source code. https://github.com/schwabe/ics-openvpn.
11. Openvpn management interface. https://openvpn.net/index.php/

open-source/documentation/miscellaneous/79-management-interface.html.
12. Openvpn manual page. https://community.openvpn.net/openvpn/wiki/

Openvpn24ManPage.
13. Openvpn mitm protection. https://openvpn.net/index.php/open-source/

documentation/howto.html#mitm.
14. Openvpn obfuscation patch. https://github.com/siren1117/

openvpn-obfuscation-release/.
15. Openvpn patch from tunnelblick. https://github.com/Tunnelblick/

Tunnelblick/tree/master/third_party/sources/openvpn/openvpn-2.4.3/

patches.
16. Openvpn security overview. https://openvpn.net/index.php/open-source/

documentation/security-overview.html.
17. Openvpn source code. https://github.com/OpenVPN/openvpn.
18. Openvpn traffic obfuscation guide. https://community.openvpn.net/openvpn/

wiki/TrafficObfuscation.
19. Xorpatch in openvpn forum. https://forums.openvpn.net/viewtopic.php?f=

15&t=12605&hilit=openvpn_xorpatch.
20. Xorpatch source code. https://github.com/clayface/openvpn_xorpatch.
21. Zpn antidpi. https://zpn.im/blog/total-anonymity-connectivity-antidpi.

Accessed: 2017-07-21.
22. Jacob Appelbaum, Marsh Ray, Karl Koscher, and Ian Finder. vpwns: Virtual

pwned networks. In 2nd USENIX Workshop on Free and Open Communications
on the Internet. USENIX Association, 2012.

23. Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-) security of 64-
bit block ciphers: Collision attacks on http over tls and openvpn. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 456–467. ACM, 2016.

24. Peter Gutmann. Linux’s answer to ms-pptp. https://www.cs.auckland.ac.nz/

~pgut001/pubs/linux_vpn.txt.
25. Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mohamed Ali

Kaafar, and Vern Paxson. An analysis of the privacy and security risks of an-
droid vpn permission-enabled apps. In Proceedings of the 2016 ACM on Internet
Measurement Conference, pages 349–364. ACM, 2016.

26. Vasile C Perta, Marco V Barbera, Gareth Tyson, Hamed Haddadi, and Alessan-
dro Mei. A glance through the vpn looking glass: Ipv6 leakage and dns hijack-
ing in commercial vpn clients. Proceedings on Privacy Enhancing Technologies,
2015(1):77–91, 2015.

27. Quarkslab. Security assessment of openvpn. https://blog.quarkslab.com/

security-assessment-of-openvpn.html. Accessed: 2017-07-21.
28. Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z Morley Mao. The

misuse of android unix domain sockets and security implications. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 80–91. ACM, 2016.

29. Kenneth White. Most vpn services are terrible. https://gist.github.com/

kennwhite/1f3bc4d889b02b35d8aa. Accessed: 2017-07-21.

https://github.com/facundoolano/google-play-scraper
http://heartbleed.com/
https://www.hex-rays.com/products/ida/
http://www.nvpn.net/
https://github.com/schwabe/ics-openvpn
https://openvpn.net/index.php/open-source/documentation/miscellaneous/79-management-interface.html
https://openvpn.net/index.php/open-source/documentation/miscellaneous/79-management-interface.html
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://openvpn.net/index.php/open-source/documentation/howto.html#mitm
https://openvpn.net/index.php/open-source/documentation/howto.html#mitm
https://github.com/siren1117/openvpn-obfuscation-release/
https://github.com/siren1117/openvpn-obfuscation-release/
https://github.com/Tunnelblick/Tunnelblick/tree/master/third_party/sources/openvpn/openvpn-2.4.3/patches
https://github.com/Tunnelblick/Tunnelblick/tree/master/third_party/sources/openvpn/openvpn-2.4.3/patches
https://github.com/Tunnelblick/Tunnelblick/tree/master/third_party/sources/openvpn/openvpn-2.4.3/patches
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://github.com/OpenVPN/openvpn
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation
https://forums.openvpn.net/viewtopic.php?f=15&t=12605&hilit=openvpn_xorpatch
https://forums.openvpn.net/viewtopic.php?f=15&t=12605&hilit=openvpn_xorpatch
https://github.com/clayface/openvpn_xorpatch
https://zpn.im/blog/total-anonymity-connectivity-antidpi
https://www.cs.auckland.ac.nz/~pgut001/pubs/linux_vpn.txt
https://www.cs.auckland.ac.nz/~pgut001/pubs/linux_vpn.txt
https://blog.quarkslab.com/security-assessment-of-openvpn.html
https://blog.quarkslab.com/security-assessment-of-openvpn.html
https://gist.github.com/kennwhite/1f3bc4d889b02b35d8aa
https://gist.github.com/kennwhite/1f3bc4d889b02b35d8aa

	Oh-Pwn-VPN! Security Analysis of OpenVPN-based Android Apps
	Introduction
	Background
	OpenVPN Security Mechanisms
	OpenVPN on Android

	Attacking OpenVPN Apps
	Adversary Model
	Vulnerabilities and Attacks

	Methodology
	OpenVPN Identification
	Profile Collection
	Security Assessment

	Result and Security Analysis
	Insecure Encryption
	Weak Authentication
	Unprotected Management Interface

	Recommendations
	Related Work
	Conclusion

