
DIAS: Automated Online Analysis for Android
Applications

Juanru Li
Dept. of Computer Science

and Engineering
Shanghai Jiao Tong University

Shanghai, China

Yuanyuan Zhang, Wenbo Yang
Dept. of Computer Science

and Engineering
Shanghai Jiao Tong University

Shanghai, China

Junliang Shu, Dawu Gu
Dept. of Computer Science

and Engineering
Shanghai Jiao Tong University

Shanghai, China

Abstract—Online program analysis aims to analyze a program
as it executes. Traditional online program analysis is generally
interactive and not automated. An automated online program
analysis requires fine-grained yet flexible analyzing infrastructure
to support. Android system, although providing many high-
level debugging interfaces, lacks such functionality and is not
convenient for developing automated analysis tools.

In this paper we present DIAS, a flexible and extensible
framework for automated online analysis of Android appli-
cations. DIAS contains an introspection monitor and many
analysis modules. Based on the introspection monitor and the
analysis modules, DIAS provides a set of analysis interfaces to
help access various types of runtime information and performs
automated online analysis. Automated program analysis is then
accomplished using these interfaces.

DIAS can monitor applications’ execution and understand
their behavior, which is useful for profiling, debugging and
security analysis. Moreover, DIAS’s analysis interface eases the
task of developing new online analysis functions.

I. INTRODUCTION

Android application nowadays are automated analyzed by
many tools with in-depth static analysis techniques. How-
ever, online analysis(a.k.a real-time dynamic program anal-
ysis) technique of Android applications is less automated.
Developing automated online program analysis tool is still
a tough yet attractive task. Unlike binary code instrumen-
tation and debugging techniques on commodity computer
platform[18][10][14] which are well supported by fundamen-
tal infrastructure, Android platform’s analyzing infrastructure
such as ADB[1] and DDMS[7] currently lacks such auto-
mated analysis functionality for assessing and monitoring
applications in a comprehensive way. A supportive framework
is necessary to meet the requirements of automated online
program analysis. An analysis framework boosts analyst’s
work efficiency by providing abundant runtime information
in a concise style. The framework encapsulates most low-level
details so that even the OS is upgraded frequently, the existing
analysis tools are still available. And analysis based on this
specific framework is more robust than analysis that directly
operates on system components.

This work is supported by The National Key Technology R&D Pro-
gram(2012BAH46B02), National Science and Technology Major Projects
(Grant No.2012ZX03002011), and Technology Innovation Project of Shanghai
Science and Technology Commission (No.13511504000).

Designing an online analysis framework for Android ap-
plication faces many challenges. Two essential factors of
automated online program analysis are real-time monitoring
and programmable analysis. Real-time monitoring requires to
monitor every execution details at the same time the analyzed
process is executing. And programmable analysis requires
code/script to operate the analyzed object rather than human
based interactive work. In detail, the proposed framework
should contain following features: (i) To achieve the goal of
monitoring details of execution, the framework should provide
fine grained instrumentation on application for comprehensive
analysis. Program analysis is often asked to find the root
cause of a problem inside a complex execution and numerous
instructions are to be analyzed. If the detail of the execution
cannot be well monitored, analyst may fail to solve the
problem. (ii) With the framework new analysis modules need
not to be built from the ground-up. Effective developing styles
such as using scripts and configuration file are expected to be
supported. (iii) Due to the weaker processing capability of
the mobile device, it is expected that the framework incurs
reasonable overhead.

There are commonly two approaches for Android applica-
tion’s online program analysis. The first approach is using
bytecode rewriting to monitor sensitive API calls and de-
ploying policy enforcement. The advantage of this approach
is that it does not modify original Android system and the
overhead is reasonable. The disadvantage is that it is less
fine-grained(for bytecode level monitoring) and it breaks the
integrity of the application. The second approach is inserting
analysis component to Android’s Dalvik VM to monitoring
the interpretation. This approach can monitor details of every
bytecode execution and need no modification of the analyzed
application. Although VM monitoring requires to modify the
original system, it contains a number of attractive advantages.
Monitoring at the VM layer brings minimal modification, and
makes the architecture of framework compact. Monitoring at
the VM layer provides better transparency for online analysis
because analyzed app cannot be aware of the low-level mon-
itoring, while bytecode rewriting approach is easier to bring
heisenbugs[16] due to the modification of the code and may
perturb application’s behavior.

In this paper we present DIAS, an online program analysis

framework for Android applications which helps analyst fulfil
automated analysis. In general, DIAS contains an introspection
monitor and many analysis modules. Inside the Dalvik VM
of Android runtime, DIAS uses an introspection monitor to
collect detail runtime information of application’s bytecode
interpretation process at the Dalvik VM layer. The monitoring
code is attached to every key processing point of Dalvik
VM to inspect the execution. Outside the Dalvik VM, DIAS
introduces analysis modules at the system service layer of
Android to support automated analysis deal with the raw data
collected by the introspection monitor, fulfilling complex task
such as encapsulating the raw data into high-level form or
analyzing the status of execution. Analysis modules can also
export interfaces for other modules to use.

DIAS provides systematic methodology to achieve auto-
mated online program analysis of Android applications. DIAS
supports automated analysis in two aspects: First, it provides
different interfaces to help inspect runtime information or
manipulate the execution process. Interfaces with simple func-
tion are provided by introspection monitor directly. Interfaces
with complex function are exported by modules to keep
introspection monitor compact. Second, the analysis module
enables analyst to interact with interfaces automatically. The
philosophy of DIAS encourages analyst to develop module to
extend the analysis functions based on existing interface. In
this manner, DIAS eases the task of developing new analysis
tools. Analysts need not to constantly re-implement the low-
level analysis functions and may efficiently construct complex
analysis tools to accomplish tasks such as application behavior
understanding and security checking.

DIAS can be viewed as an extension of Android’s logging
and debugging service. Rather than simply implementing
online analysis, the main contribution of DIAS are:

• Dalvik VM introspection. One of the most important
features of DIAS framework is that it analyze application
through inspecting the Dalvik VM. Instead of inspecting
system events only, DIAS could monitor details of every
instruction’s execution. This gives analyst powerful ob-
servation capability. Based on the introspection monitor,
analysis modules can be used as information wrapper
to assemble low-level data into high-level semantic-rich
events, and perform advanced analysis functions.

• Extensible Analysis Interface. Interfaces of DIAS defines
the function of the framework. An analysis task need not
develop analyzing code from the ground-up and could
take full advantage of the existing interfaces. Because
DIAS provides different interface for dealing with differ-
ent types of runtime state. Analyst could simply decide
which part of execution should be analyzed by choosing
proper interface. The combination of different interfaces
generates various functions for debugging, profiling or
security monitoring. Except for the pre-built interfaces,
new analysis module with complex function can also be
developed to extend the framework’s interface.

• Build-in Analysis. Original Android debugging and log-
ging infrastructure only supports remote interaction,

which means the recorded information is observed and
dealt outside the system. DIAS’s analysis module exe-
cutes within the analyzed applications in the same system.
This build-in analysis inspects the execution with better
efficiency and avoids interactive overhead.

II. DIAS FRAMEWORK

A. Overview

Figure 1 shows the overview of DIAS framework. Inside
the Dalvik VM is the introspection monitor of DIAS which
monitors the execution of any analyzed application. The intro-
spection monitor inserts instrumentation interfaces to wherever
the bytecode is interpreted, monitors the execution process of
the Dalvik VM. The VM-based monitoring guarantees trans-
parency to the analyzed applications when they are executed
with DIAS’s introspection. Connected with the introspection
monitor, analysis modules of DIAS fulfil certain analysis tasks
using the information from interfaces exported by the monitor.
The framework is designed for general purpose analysis and
can meet the requirements of almost all sorts of automated
online analysis on Android applications.

DIAS framework is compact for it uses one introspection
core to monitor all kinds of information. A compact archi-
tecture makes DIAS independent of the change of system
environment and persists in high consistency. Thus DIAS
can support various kinds of Android devices well and is
less affected by the upgrading of the operating system. And
monitoring the Dalvik VM is efficient for collecting data with
minimum modification of the system.

The hierarchy of DIAS(introspection monitor + analysis
modules) isolates the analysis work and the execution of
Dalvik VM. This is important for keeping VM work stable
and proper. Moreover, analysis module can be extended by
third party developers. It is much better for a framework
to dynamically load new modules than integrate all sorts of
functions in one module.

B. Dalvik Introspection

DIAS uses an introspection monitor to observe the Dalvik
VM’s state and to record information during the execution. An
online analysis on the Dalvik VM can effectively monitor the
execution of an application for two reasons: First, Dalvik VM
is the core part of the Android OS which is responsible for
interpreting the bytecode for the whole application layer of the
Android OS stack. Thus the interpreter of the Dalvik VM is
the essential place to monitor the execution of any application.
Second, unlike commodity VM which often contains a full OS
and one or more applications, in Android every application
has its own Dalvik VM instance in its process space. The
introspection, although from low level, has a good viewpoint
focusing on one certain application’s execution.

The introspection monitor consists of many ”probes”. The
probe is actually instrumentation code inserting to the Dalvik
VM to inspect it. These instrumentation code are then executed
wherever the analyzed application is executed. The Dalvik VM
includes two interpreters, a portable one and a fast one[11].

Browser FileManager EmailManager ...

Applications

Activity Manager Window Manager Content Providers View System

Application Framework

Location Manager Package Manager ...

System Services

Surface Manger Media Framework WebKit

SGL ...

Display Driver Camera Driver Bluetooth Driver

Linux Kernel

USB Driver Keypad Driver WiFi Driver

Android Runtime

DVM with InDroid

Core Libraries

InDroid
Modules

SGLSQLite

Fig. 1. DIAS Framework

The portable interpreter is largely contained within a single
C function, and can be compiled on any system that supports
GCC. The fast interpreter uses hand-coded assembly fragments
to boost the interpretation on specific hardware platform.
DIAS’s introspection monitor mainly inserts instrumentation
code to the fast interpreter.

One main problem for introspection is how to bridge the
semantic gap between the original high-level logic of the ap-
plication and the low-level execution process inside the Dalvik
VM. The Dalvik VM manages adequate runtime application
state such as name of Class/Object, which is very helpful
for constructing semantic-rich events. Inside the interpreter
there are bytecode interpretation handler, exception handler
and many other events’ handler. Insert instrumentation code
into these handlers helps locate the corresponding events
effectively. What’s more, DIAS belongs to Dalvik VM and it
forks with the Zygote process into different instance for each
analyzed application. That is to say, DIAS produces unique in-
stance to analyze every application. This characteristic greatly
reduces the potential interference.

Notice that the introspection monitor’s probe does not
contain any analysis function, and is not responsible for
reconstruct semantic-rich events. The only task for the probe
is to monitor the execution process and export useful data
via analysis interfaces, which is discussed in the following
subsection.

C. Analysis Interfaces
To understand an application’s execution on the Dalvik VM,

analyzing the runtime state is necessary. As the application’s
code executes, every step of the execution produces various
kinds of runtime information(e.g., register changing, memory

accessing, arithmetic operation). The runtime information for
analysis is well managed by DIAS and is provided through
DIAS’s analysis interfaces.

DIAS’s basic philosophy is interface oriented analysis. The
analysis interfaces formulate the runtime data accessing and
application manipulation to decouple the analyzing task with
the functionality of the Dalvik VM. Automated analysis can
be done by programming with these interfaces. Also, different
analysis modules are connected by the analysis interface.

Since DIAS’s target is to analyze applications on Android
thoroughly, It should record all the runtime information and
perform advanced analyzing functions. However the code size
of the introspection monitor should be limited to keep the
Dalvik VM tight. So the implementation of complex analyzing
functions cannot be placed into the introspection monitor. To
this end, DIAS’s analysis interfaces are designed into two
categories. The first category is data-centric interfaces mainly
provided by the introspection monitor directly. Since the intro-
spection monitor basically does not perform any analysis work,
it simply reads low-level information from the Dalvik VM(e.g.,
register values, operands of opcode, pointer of Object/String)
and exports it with data-centric interfaces. The second category
is logic-centric interfaces mainly provided by the analysis
module of DIAS. These kinds of interfaces not only export
high-level complex information such as String or Object,
but also provide certain analysis functions to manipulate the
analyzed application. For instance, an interface for extracting
certain parameters of an API call is able to filter invoked
procedure, and then retrieve the parameter automatically.

Similar to JVM Tool Interface[19] which is not supported
by Dalvik VM, DIAS’s analysis interface covers almost every

aspect of Dalvik VM execution. And the set of DIAS’s analysis
interface is not fixed but extensible. As the new analysis
module is added into this set, the functionality of DIAS is
extended.

D. Analysis Modules

DIAS’s systematic methodology to achieve automated anal-
ysis is via interface manipulation and module developing. The
analysis module of DIAS framework is responsible for per-
forming advanced automated analyzing functions. To imple-
ment the analyzing function, an analysis module manipulates
the analysis interfaces to collect runtime information first, and
then define its own logic code to deal with the collected data.
Finally, an analysis module’s function is also defined as an
analysis interface for other modules to use.

As Figure 2 shows, a typical analysis scenario is that one
module may communicate with introspection monitor to ac-
cess Objects such as Location Object, SMS Object or password
String Object. As mentioned above, the introspection monitor
is not responsible to reconstruct the semantic-rich Objects.
It only exports interface for analysis module to access the
low-level pointer of these Objects. Thus the analysis module
must contain corresponding parsing code to acquire the useful
information from the pointer. After a module is developed
for encapsulating certain Object’s pointer, it can also exports
an interface for other module to access this Object directly
without re-defining the parsing logic. In this manner the code
reuse principle is assured. And the automated analysis is easy
to be implemented by combining different modules.

E. DIAS Manager

One problem for DIAS’s analysis is that each process is
isolated by the sandbox[3]. Because DIAS instance belongs to
application’s Dalvik VM, many restrictions are introduced if
cross application analysis is employed. One major problem is
that the developed analysis tools can only access application’s
own resources(e.g. files at /data/data/packageName). Thus,
to develop analysis modules, the developer should carefully
check any permission-denied situation.

Generally it is not suggested to break the sandbox restriction
for security consideration. If analysis module wants to use
restricted resource or communicates with other application’s
DIAS instance, DIAS will manage this cross-application anal-
ysis behavior by introducing a global module. This global
module, DIAS Manager, is an application level application
to help fulfill such functions. The DIAS manager executes
as an independent process which communicates with every
instances of the DIAS. It uses local socket to communicate
and it aggregates information from each process to make
comprehensive cross-application analysis.

III. IMPLEMENTATION

A. Dalvik Modification

We implement DIAS on Dalvik VM of Android 4.0.x, 4.1.x
and 4.2.x. The source code is written mainly in C++ and
ARM Assembly. In Dalvik the fast interpreter we modified is

optimized and each opcode is interpreted with a strict 64 bytes
block of ASM code. So the modification is highly restricted
and is inappropriate to insert complex instrumentation code
into the interpreter. DIAS’s solution is to link ASM with C
functions. Our implementation only inserts a function call stub
at the very beginning of every opcode’s interpretation code.
/* File: armv6t2/OP_MOVE.S */
/* ------------------------------ */

.balign 64
.L_OP_MOVE: /* 0x01 */

/* for move, move-object, long-to-int */
/* op vA, vB */

#if defined(DIAS)
mov r0, r4 @ r0<- program counter
mov r1, r5 @ r1<- Frame pointer
mov r2, r6 @ r2<- Thread pointer
BL monitor_mov @ Insert Probe

#endif
mov r1, rINST, lsr #12
ubfx r0, rINST, #8, #4
FETCH_ADVANCE_INST(1)
GET_VREG(r2, r1)
GET_INST_OPCODE(ip)
SET_VREG(r2, r0)
GOTO_OPCODE(ip)

The instruction BL monitor mov directs the execution pro-
cess to DIAS’s probe function. The inserted probe functions
like monitor mov are implemented using C or C++ because it
is easy to maintain. Some of the declaration of the probes are
give below:
void monitor_mov

(u2 * pc, u4 * fp, Thread * self);
void monitor_object

(Method * m, Object * obj);
void monitor_reg

(RegOpType type, u4 * fp, u2 index);
void monitor_opcode

(u2 * pc, u4 * fp, Thread * self, Method * method);

DIAS’s introspection monitor inserts these probes to relative
part of the Dalvik VM. Then the information is passed through
the parameters. The passed parameters are simply some point-
ers to crucial environment struct of the Dalvik VM. Inside
the probe functions the analysis interface is implemented to
accomplish more complicated analysis logic.

In addition, the Just-In-Time compiler was introduced to
improve performance by compiling Dalvik instruction traces
into native machine code[13]. However, we don’t make use
of the JIT technique for two reasons: First, to insert code
into interpreter with JIT is complicated, and even Dalvik’s
debugging system still uses the portable interpreter without
JIT. Second, developing and maintaining the interface with
high level language(C/C++) is much easier than maintaining
an assembly version with JIT. So DIAS’s online analysis
disables Android’s JIT when monitoring.

B. Interface Definition

For DIAS’s analysis interface, the analysis requirement is
always changing and it is not necessary to fix the range of the
interface. DIAS first provides a set of basic interfaces to meet
the requirements of simple online analysis. They are:

• GetOpcode. This interface exports the current state’s
opcode type. The opcode’s type is related to ceratin
operation. For instance invoke and return reveal a method
invoking.

Modules Module C Module BModule A

Android
Runtime

API

DataBase

Content://
contact

Internet

getLocation

DAT
A

Password

sendSMS

InDroid Monitor

APP A APP B
System
Server

InDroid Monitor

Fig. 2. Analysis based on DIAS

• GetMethod. This interface returns the name of current
executed Method in string form. Certain kinds of API
calls can be filtered by name using this interface.

• GetClass. This interface returns the name of current
executed Java Class in string form.

• GetUID. This interface returns current application’s
unique user ID(UID). The Android system assigns a UID
to each Android application and runs it as that user in a
separate process[4].

• GetPID. This interface returns current application’s
proccss ID(PID). Notice that Android allows developers
set android:process so that components of different ap-
plications run in the same process.

• GetInt. This interface searches current state and returns
integer for current operation(if exists). It may return null
result. This interface is mainly used for monitor register
changing.

• GetString. This interface searches current state and re-
turns string for current instruction(if exists). Not every
execution contains string, so it may return null result.
Both crucial system parameters such as ContentProvider
URI and privacy related data such as password can be
monitored using this interface.

• GetObject. This interface searches current state and re-
turns the pointer of a universal Object(except String
Object) for current operation(if possible). It may also
return null result. This interface is possibly the most
powerful interface for the analysis module because most
of the advanced analyses involve certain Object such as
android.content.Intent and android.telephony.

SmsMessage.
• GetPackageInfo. This interface returns current appli-

cation’s package information including package name,
package signature and the private directory belonging to
the application. This interface is the most complicated
one exported by the introspection monitor. It seems
that this interface should be implemented outside the
introspection monitor. But the package information is
somehow sensitive for outside modules to access, thus
the monitor provides this interface directly.

After providing the basic interfaces, advanced analysis func-
tion is implemented with analysis modules. Figure 3 shows the
interaction between analysis modules and simple interfaces
provided by the introspection monitor. An analysis module
is generally a C/C++ function which receives information
from other interfaces and outputs wrapped information. In the
following subsection we discuss some typical modules.

C. Deployment

The deployment of DIAS is simple. Because DIAS only
modifies the Dalvik VM’s library(/system/lib/libdvm.so) in
system. So it just replaces the Dalvik VM library with an
alternative one attached by the DIAS introspection monitor.
For a device with the Android OS installed, this replacement
scheme keeps all of the existing system and user’s data. This
feature solves the data lost problem of many low level analysis
tools(such as TaintDroid) which need to flash images into the
device.

To replace Dalvik VM(/system/lib/libdvm.so) the system
partition should be mounted as read/write mode and this

Runtime Data

InDroid Module

An instance of Dalvik VM

Package

Class

Method

G
e
tC

la
ss

Bytecode

G
e
tO

p
c
o

d
e

G
e
tM

e
th

o
d

G
e
tU

ID

G
e
tP

ID

G
e
tP

a
ck

a
g

e
In

fo

G
e
tS

tr
in

g

G
e
tI

n
t

G
e
tO

b
je

c
t

Fig. 3. Interaction between Analysis Modules and the Introspection Monitor

requires a root privilege. Although for many mobile devices
the root process is applicable, the root privilege should be
disabled to ensure the system’s security model. Another choice
to install DIAS is to use recovery mode of the system, which
is able to rewrite system partition’s data. DIAS can be made
as an update package and the user only need to flash this
update package to finish deployment (Some devices checks
the signature of manufacture, so a third party recovery tool is
required to ignore this verification).

IV. EVALUATION

A. Compatibility

DIAS is a universal and stable analyzing framework for
various kinds of Android devices. We find that applying
DIAS to different devices and different version of Android
is applicable. We have implemented DIAS on major versions
of the Android OS(4.0.x, 4.1.x and 4.2.x), deployed and tested
DIAS on mobile phones and tablet (Samsung Galaxy Nexus,
Samsung Galaxy S3, ASUS Nexus 7, Samsung Nexus S, Mo-
torola Droid Razr). Among them, Samsung Galaxy Nexus and
ASUS Nexus 7 are tested with both factory image and third
party AOKP rom[5], Samsung Galaxy S3, Samsung Nexus S
and Motorola Droid Razr uses original system provided by the
manufacturer.

The fragmentation problems is a long term trouble for
Android analysis tools. The compact architecture and Dalvik
VM monitoring strategy of DIAS helps it adapt multiple

environments. Manufacturer generally modifies original An-
droid application layer to add new features such as launcher
and custom applications. But the Android runtime is seldom
modified. And the definition of Dalvik bytecode keeps stable
for OS upgrading. Thus DIAS is able to work well with various
Android OS versions from different manufacturers.

We developed analysis module based on DIAS to monitor
SMS Manager, Contacts Manager and some other applications
for online query(such as train and airplane schedule) simul-
taneously, record the sensitive APIs(e.g., SMS and contacts
related APIs) and the string data into log file. All of the
applications perform undisturbed with DIAS and the test
discovers no compatibility problem. We also asked three
users to test DIAS in daily use for about one month. The
feedbacks are positive. All of the users response that the
system is stable and normal operation is not affected. The
feedback illustrates that DIAS keeps well user experience for
it seldom interferes normal execution. As mainstream devices
with improved processor more or less compensate the delay,
we believe that DIAS is suitable for general and practical
instrumentation.

B. Performance Overhead

The design of DIAS tries to keep well balance between per-
formance and functionality. We use standard benchmark tools
to quantify the overhead. We choose three benchmark tools:
Linpack[9], BenchmarkPi[6] and caffeineMark[21]. These
benchmark tools mainly focus on the performance on Dalvik
VM. Because DIAS is for Dalvik VM introspection and the
native code’s execution is not affected. Thus we do not choose
the benchmark for native code such as graphic rendering.

The test platform is a Samsung Galaxy Nexus mobile phone
with the Android OS 4.2.1. The tested DIAS framework only
enables Dalvik VM introspection and no complex analysis
module is loaded. (If the analysis module performs concrete
analysis, there will be an overhead related to the analysis task
and is hard to be quantized). We run the benchmark with fast
interpreter with JIT(which is Android’s standard configura-
tion), the portable interpreter(which is Android’s debugging
configuration) and fast interpreter with DIAS introspection
monitor(with JIT disabled).

As the Table I shows, the portable interpreter is about five
times slower than the fast interpreter with JIT in benchmark
test (Although the actual gap for common applications with
more human-device interaction may not reach five times). That
is to say, when an application is debugged using Android’s
portable interpreter, there is a 5x slowdown. The fast inter-
preter with DIAS introspection monitor is generally 2x faster
than the portable interpreter. The benchmark result shows
that DIAS’s performance is better than that of Android’s
debugging infrastructure. And the benchmark gives probably
the maximum gap between DIAS and the fast interpreter with
JIT because the benchmarks suite is often calculation intensive
and JIT compilation may boost the performance. So we believe
that DIAS gives an acceptable overhead to make analysis
practical.

TABLE I
BENCHMARK RESULTS

Test item Fast Interpreter with JIT Portable Interpreter Fast Interpreter with DIAS introspection monitor
Linpack single thread 44.263 MFLOPS 8.211 MFLOPS 13.989 MFLOPS
Linpack multi thread 77.834 MFLOPS 14.754 MFLOPS 24.499 MFLOPS
CaffeineMark Sieve 8445 1464 2211
CaffeineMark Loop 17127 1324 1948
CaffeineMark Logic 10540 1419 2345
CaffeineMark String 5837 4714 5599
CaffeineMark Float 7678 993 1753
CaffeineMark Method 5942 1562 2285
CaffeineMark Overall 8604 1649 2462
Benchmark-Pi 476 milisec 2021 milisec 1417 milisec

V. RELATED WORK

A. Android Debugging Infrastructure

The Android SDK provides a set of supportive components
need to debug applications. The main components that com-
prise a typical Android debugging environment are:

1) Android Debug Bridge: The Android Debug
Bridge(ADB)[1] acts as a middleman between a device
and a development system. It provides various device
management capabilities, including moving and syncing files
to the emulator, running a shell on the device or emulator, and
providing a general means to communicate with connected
emulators and devices.

2) Dalvik Debug Monitor Server: The Dalvik Debug Mon-
itor Server(DDMS)[7] is a graphical program that communi-
cates with your devices through ADB. DDMS can capture
screenshots, gather thread and stack information, spoof incom-
ing calls and SMS messages, and has many other features.

3) JDWP debugger: The Dalvik VM supports the Java
Debug Wire Protocol(JDWP) protocol[8] to allow debuggers
to attach to a VM. Each application runs in a VM and exposes
a unique port. A JDWP-compliant debugger can be attached
to this port so it can communicate with the application VMs
on devices.

4) JVM Tool Interface: The JVM Tool Interface(JVM
TI)[19] is a programming interface which provides both a way
to inspect the state and to control the execution of applications
running in the Java virtual machine. JVM TI is intended to
provide a VM interface for the full breadth of tools that need
access to VM state. Tools can be written directly to JVM TI
or indirectly through higher level interfaces.

B. Android Application Online Analysis

Android’s own debugging infrastructure provides Dalvik
Debug Monitor Service(DDMS) and Logging system[2] to
help analyzing. Although using DDMS could monitor the
execution of applications. debugging is however not so au-
tomatic and the overhead for heavy instrumentation is high.
And Debugger’s interface is not extensible for designing new
tools. The Android Logging system is to output four kinds
of message. It does help analyzing applications. The problem
is that it doesn’t cover all the output runtime data. And for
a heavy instrumentation the Logging system brings very bad
performance. DIAS is a build-in analysis framework for the

Dalvik VM and reduce the overhead of remote debugging’s
interaction. The analysis module of DIAS is able to perform
complicated analysis logic automatically.

Dalvik VM currently does not support full features of the
JVM TI. Chien-Wei Chang, et al. implemented a subset of
JVM Tool Interface on Dalvik Virtual Machine[12]. How-
ever they did not implement fine-grained monitoring such
as bytecode instrumentation. DIAS is able to fulfil fine-
grained monitoring and analysis. The analysis interface of
DIAS covers each bytecode’s interpretation. What’s more, the
interfaces themselves are also extensible. Analyst can design
new modules to extend the interfaces and the functionality of
the framework.

Many online analysis tools for Android modify the an-
alyzed application’s code to insert instrumentation code.
Redexer[20] is a bytecode instrumentation framework for
Dalvik bytecode (used in Android applications). Redexer is
a set of OCaml based utilities which helps programmers
parse, manipulate, and generate bytecode for the Dalvik
VM. Redexer modifies applications code to insert instru-
mentation code. [http://www.cs.umd.edu/projects/PL/redexer/]
Aurasium[23] is a tool that can rewrite applications to inter-
cept system calls to enforce security policies. Dr. Android[17]
is also a bytecode rewriter for Android that removes Android
permissions in existing application package and replaces them
with a specified set of fine-grained versions. The major nega-
tive for these bytecode rewriting technique based tools is that
the instrumentation code inserted into the application breaks
the original signature of the application, and the modification
of the application may affect the execution stability potentially.
DIAS introspection monitors the Dalvik VM rather than insert
instrumentation code into the application. DIAS adopts non-
intrusive instrumentation style and doesn’t modify applica-
tion’s code, thus doesn’t break the signature of the application
which is very important for verification.

There are also many tools which modify the system frame-
work for analysis. TaintDroid[15] is a popular information
flow tracking system for realtime privacy monitoring on
Android smartphones. TaintDroid tracks the flow of sensi-
tive information via Dalvik VM introspection, which is also
adopted by our framework. TaintDroid tracks the propagation
of tainted data from sensible sources(in program variables,
les, and IPC) on the phone and detects unauthorized leak-

age of this data. However, TaintDroid is a specific purpose
analysis framework, and its architecture is far from compact.
ProfileDroid[22] is a comprehensive, multi-layer system for
monitoring and profiling Android applications. It profile apps
at four different layers. Although ProfileDroid is a systematic
framework for application profiling, its architecture is complex
and it does not support extended module well. Because it
relies on many existing system components such as adb and
logcat for characterizing Android applications behaviors at
multiple layers. It cannot provide fine-grained analysis and
better performance. Droidscope[24] is an Android analysis
platform for malware analysis. It reconstructs both the OS-
level and Java-level semantics simultaneously and seamlessly.
DroidScope exports three tiered APIs that mirror the three
levels of an Android device: hardware, OS and Dalvik Vir-
tual Machine. One major disadvantage is that DroidScope
requires extensive modification to the Android OS, which has
significant usability issues and hinders efforts for widespread
adoption. The architecture of DIAS is lightweight compared
with DroidScope and is easy to be applied.

VI. CONCLUSION

In this paper we present DIAS, an automated online analysis
framework for Android application. DIAS is designed to be
open and extensible. It provides systematic methodology and
adequate analysis interfaces to support automated application
analysis, and it is convenient for automated analysis of perfor-
mance, behavior and security verification of the application.
New analysis module is encouraged to be added to extend the
functionality of the framework. DIAS also controls the over-
head in an acceptable range to guarantee that the applications
could be executed normally.

REFERENCES

[1] Adb (android debug bridge) - android developers. http:
//developer.android.com/tools/help/adb.html.

[2] Log — android developers. http://developer.android.com/
reference/android/util/Log.html, .

[3] Permissions — android developers. http://developer.
android.com/guide/topics/security/permissions.html, .

[4] Designing for security — android developers. http:
//developer.android.com/guide/practices/security.html, .

[5] Android open kang project. http://aokp.co.
[6] Benchmarkpi. http://androidbenchmark.com.
[7] Using ddms — android developers. http://developer.

android.com/tools/debugging/ddms.html.
[8] Java debug wire protocol. http://docs.oracle.com/javase/

1.5.0/docs/guide/jpda/jdwp-spec.html.
[9] Linpack for android. http://www.greenecomputing.com/

apps/linpack/.
[10] F. Bellard. Qemu, a fast and portable dynamic translator.

USENIX, 2005.
[11] D. Bornstein. Dalvik vm internals. In Google I/O

Developer Conference, volume 23, pages 17–30, 2008.
[12] C.-W. Chang, C.-Y. Lin, C.-T. King, Y.-F. Chung, and S.-

Y. Tseng. Implementation of jvm tool interface on dalvik

virtual machine. In VLSI Design Automation and Test
(VLSI-DAT), 2010 International Symposium on, pages
143–146. IEEE, 2010.

[13] B. Cheng and B. Buzbee. A jit compiler for android’s
dalvik vm. In Google I/O developer conference, 2010.

[14] C. Eagle. The IDA Pro Book: The Unofficial Guide to
the World’s Most Popular Disassembler. No Starch Press,
2008.

[15] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. Mc-
Daniel, and A. Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX confer-
ence on Operating systems design and implementation,
pages 1–6, 2010.

[16] J. Gray. Why do computers stop and what can be
done about it. In Symposium on reliability in distributed
software and database systems, pages 3–12. Los Angeles,
CA, USA, 1986.

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, N. Reddy, Y. Zhu,
J. S. Foster, and T. Millstein. Dr. android and mr. hide:
Fine-grained security policies on unmodified android.
2011.

[18] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200. ACM, 2005.

[19] K. OHair and J. J. Heiss. The jvm tool interface (jvm
ti): how vm agents work. Web page, Dec, 2006.

[20] N. Reddy, J. Jeon, J. Vaughan, T. Millstein, and J. Foster.
Application-centric security policies on unmodified an-
droid. UCLA Computer Science Department, Tech. Rep,
110017, 2011.

[21] R. Reddy. Caffeinemark. https://play.google.com/store/
apps/details?id=com.android.cm3.

[22] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Pro-
filedroid: multi-layer profiling of android applications. In
Proceedings of the 18th annual international conference
on Mobile computing and networking, pages 137–148.
ACM, 2012.

[23] R. Xu, H. Saıdi, and R. Anderson. Aurasium: Practical
policy enforcement for android applications. In Proceed-
ings of the 21st USENIX conference on Security, 2012.

[24] L. Yan and H. Yin. Droidscope: Seamlessly recon-
structing the os and dalvik semantic views for dynamic
android malware analysis. In Proceedings of the 21st
USENIX conference on Security symposium, pages 29–
29. USENIX Association, 2012.

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/practices/security.html
http://developer.android.com/guide/practices/security.html
http://aokp.co
http://androidbenchmark.com
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://www.greenecomputing.com/apps/linpack/
http://www.greenecomputing.com/apps/linpack/
https://play.google.com/store/apps/details?id=com.android.cm3
https://play.google.com/store/apps/details?id=com.android.cm3

	Introduction
	DIAS Framework
	Overview
	Dalvik Introspection
	Analysis Interfaces
	Analysis Modules
	DIAS Manager

	Implementation
	Dalvik Modification
	Interface Definition
	Deployment

	Evaluation
	Compatibility
	Performance Overhead

	Related Work
	Android Debugging Infrastructure
	Android Debug Bridge
	Dalvik Debug Monitor Server
	JDWP debugger
	JVM Tool Interface

	Android Application Online Analysis

	Conclusion

