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a b s t r a c t 

In recent years IoT platforms and smart-home systems have rapidly grown. Meanwhile, mobile apps have 

been widely accepted as user interfaces in these consumer IoTs, allowing users to retrieve processed data 

and issue specific commands. We notice that these companion apps are also used as gateways, provid- 

ing Internet connectivity for resource-constrained devices, and its mobility advantage over static gateways 

further promotes applications of this kind. In this paper, we extracted this pattern into a new architecture 

called app-in-the-middle IoT . We provided a holistic view of what app-in-the-middle IoT is and introduced 

its attack surface by comparing it with two well-studied IoT architectures, which we refer to as cloud- 

in-the-middle IoT and trigger-action platform IoT. We detailed the similarities and differences between 

the three architectures, derived security goals of app-in-the-middle IoT, and drew the key to analyzing it 

from authentication, access control, and availability aspects. We adopted a method of building an abstract 

model and extracting the concept of token from the working process. To achieve security goals, the token 

needs to own these properties: mutual authentication, unforgeability, and resistance to replay attacks. 

We argue that the role the app plays is critical to the working process, which affects how the properties 

of the token are satisfied. During analysis, we find that the application scenarios significantly influence 

the role of the app. Therefore, we discussed the security of different situations separately. For each sce- 

nario, we indicated how the token should be generated and distributed to meet the security goals, and 

summarized several security rules. We analyzed several practical cases, which demonstrate that violating 

these rules can lead to severe consequences, such as unauthorized access, information leakage, irrevoca- 

ble authorization, and device hijack. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

IoT greatly facilitates the lives of people on-the-go and at

ome by enabling the connectivity of surrounding physical de-

ices. These consumer-oriented devices can be health monitoring

evices (such as glucose monitors and fitness trackers), smart

oor locks when we use short-term house rental services (e.g.,

irbnb), and smart home devices, providing meaningful data to

he user and performing specific actions. Devices communicate

ith clouds to enable data integration, device remote access, and

evice sharing. They are usually controlled through companion

pps installed on users’ smartphones. Smartphones have been in

eople’s daily life for many years, users have become accustomed

o using them to interact with surrounding IoT devices, regarding

he device companion app as an interface to retrieve processed

ata, issue specific commands, and configure automatic rules. 
∗ Corresponding author. 
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Unlike a desktop computer or a smartphone that connects to

he Internet with high-speed networks, lots of IoT devices are

attery-powered, have limited computation capability, and may

e used in the mobility, unable to support the power-consuming

nd resource-demanding WiFi or Cellular networks connections

hus lacking the capability of direct Internet connection. Therefore,

hese devices may use protocols such as Bluetooth Low Energy

BLE) to communicate with the more powerful smart mobile de-

ice nearby, establishing personal area wireless connectivity. That

s, smartphones act as a gateway/hub, providing Internet connec-

ivity for resource-constrained devices. 

The companion app does the protocol wrapping, enabling the

evice to communicate with the cloud. Due to the relative posi-

ion of the app, we name this pattern app-in-the-middle IoT . It is

ifferent from the existing well-discussed IoTs, especially the one

ith Hub-connected devices. We will introduce the differences and

imilarities in detail in Section 3 . Here we take several points as

xamples to depict. 

Previous works that discuss consumer IoT security fall into two

ategories. One is the security of the cloud-based IoT (which we

ame as cloud-in-the-middle ), for example, Zhou et al. studied the

https://doi.org/10.1016/j.cose.2020.102000
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.102000&domain=pdf
mailto:ice_wisdom@sjtu.edu.cn
mailto:jarod@sjtu.edu.com
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Fig. 1. The app-in-the-middle IoT. 
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interaction between the three components (i.e., devices, apps, and

clouds) ( Zhou et al., 2019 ). The other is security analysis on the

systems that the cloud can run trigger-action rules (e.g., Smar-

tApps in SmartThings), which we name as Trigger-action platform

IoT . For example, Fernandes et al. introduced vulnerabilitis caused

due to over-privileged smart apps ( Fernandes et al., 2016a ). These

works ignore the impacts of the app that plays different roles in

the app-in-the-middle IoT. There also exists works focusing on the

interaction between the app and Bluetooth devices. Sivakumaran

et al. showed that malicious apps co-located with the device com-

panion app could access the device through the BLE channel, and

proposed the way to defend this kind of attack application-layer

security ( Sivakumaran and Blasco, 2019 ). Naveed et al. showed

that unauthorized apps could access the external device (e.g.,

Bluetooth device) due to the coarse-grained permission provided

by the Android system ( Naveed et al., 2014b ). These works studied

the threats that can affect the app-device interaction but failed

to put the app-device interaction in the larger picture. We notice

that secure app-device interactions need to seek the help of the

cloud to, for example, authenticate each other and further provide

support for functions like device sharing, while cloud-device com-

munication is proxied by the app in the middle. The fundamental

problem is that app-device authentication needs to be done

through the cloud, while cloud-device communication is proxied

by the app. This interdependence substantially expands the attack

surface of the app-in-the-middle IoT. 

In this work, we are the first to propose the new genre of IoT

architecture called app-in-the-middle IoT, in which devices depend

on the smartphone’s Internet connectivity to communicate with

their clouds. We abstract the features of this particular IoT archi-

tecture and thoroughly discuss its security. We take the approach

of forming an abstract model and extracting the token concept. By

analyzing the token property, we conclude potential threats and

propose security rules. The practical cases we analyze demonstrate

that violating these rules can lead to severe consequences. This

work advances the understanding of this particular type of con-

sumer IoT, thereby improving the security status of smart devices

of this type. 

The rest of this paper is structured as follows: we provide

an overview of app-in-the-middle IoT in Section 2 . This section

also introduces attacks that can be conducted on the device-app

Bluetooth channel. Section 3 introduces the differences and simi-

larities between app-in-the-middle IoT and two existing architec-

tures that have been widely discussed in research papers, par-

ticularly with regard to the function of components and security

threats. Section 4 details security analysis of app-in-the-middle IoT.

Section 5 reviews the security rules and provides several cases that

show the consequences of violating security rules. Related work is

described in Section 6 , and we conclude the paper in Section 7 . 

2. Background 

2.1. Overview of app-in-the-middle IoT 

Previous work has revealed the use of mobile devices as

gateways. Seol et al. (2015) and Zachariah et al. (2015) pro-

posed the very same smartphone-centric approach to connect

resource-constrained IoT devices to the Internet. Pereira and

Aguiar, 2014 point out that with varied local and wide-area con-

nectivity capabilities, smartphones offer a unique opportunity to

serve as mobile gateways for other more constrained devices

with local connectivity. Santos et al. (2016) proposes an IoT-based

mobile gateway solution for mobile health (m-Health) scenarios

where gateway autonomously collects information and acts as a

communication channel. Meanwhile, smartphones are already a

common choice of gateways for a myriad of devices in practice,
uch as wearable devices, smart appliances and health devices,

mart locks that used on the shared bicycles and electric motor-

ycles, and smart car trunk locks that enable car trunk sharing and

runk delivery. We classify this particular kind of IoT as app-in-the-

iddle IoT , as shown in Fig. 1 . 

We clarify this concept by describing several preliminary def-

nitions: (i) The IoT devices that adopt this architecture are fea-

ured by the attributes that they are power-constrained, have only

ireless low power communication capability, and need to com-

unicate with remote clouds to report data or accept instructions.

ii) Devices use smartphones as gateways to connect to the Inter-

et, benefiting from the convenience of mobility and flexibility. The

idely adopted wireless protocol is Bluetooth, as almost all smart-

hones are equipped with Bluetooth technology whose communi-

ation range and power consumption are suitable for this appli-

ation scenario. (iii) Device companion apps are installed on the

martphones to send application-level data and instructions back

nd forth between devices and their corresponding clouds. (iv) The

ole of the companion app can vary greatly. 

Previous work considers gateway/hub as an intermediate node,

olding the view that hub-connected devices follow a similar

odel to cloud-connected devices and the existence of the gate-

ay/hub will not affect the interactions between the device, the

ompanion app, and the cloud ( Zhou et al., 2019 ). However, we ar-

ue that app-in-the-middle does have an impact on the interac-

ions. Its security needs to be thoroughly discussed. 

AITM IoT takes the smartphone as the hardware gateway and

he device companion app as the software gateway. The app and

he device need to authenticate each other at the application-

ayer because the lower link can not provide identity assurance

 Sivakumaran and Blasco, 2019 ). The authentication, however, re-

uires the involvement of the cloud because these two do not

hare any pre-set secrets. On the other hand, only the smart mo-

ile device is able to access the cloud. Ideally, it transmits mes-

ages between the IoT device and the cloud, without eavesdrop-

ing or modifying the data. But the app is under threat; the data

ay be obtained or even reformatted by attackers. 

In addition, the application scenario also affects the role that

he app needs to play. For devices whose functions are collect-

ng and reporting data to clouds, like fitness wristbands, smart

hermometers, and blood glucose meters, their companion apps

ainly wrap and forward the data. However, for those devices that

re controlled by users to perform specific actions, such as smart

oor locks and car trunks, their companion apps may handle more

omplex interaction logic to satisfy the advanced requirements of

sers, such as privacy protection, partial control, and temporary

ser authorization and revocation. 
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Fig. 2. Two attacks that endanger BLE. 
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.2. Bluetooth Low Energy 

BLE (Bluetooth Low Energy) technology is an ideal tool for im-

lementing IoT (Internet of Things) applications, as it consumes lit-

le power and provides wireless communication. Many devices and

ervices using this technology already available on the market. 

Attacks against BLE . Two classes of adversaries can threaten

he BLE security at a relatively low cost: passive attackers that

niff the wireless traffic by simply using low-cost hardware such

s Ubertooth One and Adafruit Bluefruit LE Sniffer; active attack-

rs that manipulate the traffic with lots of mature skills avail-

ble ( Jasek, 2017 ). Possible attacks include: eavesdropping attack

hat sniffs the unencrypted traffic and extracts sensitive data; de-

ice impersonation attack that clones the device using MAC ad-

ress and other information; replay attack that reuses sensitive

ommands such as unlock the device; delayed message attack that

ams specific message and replays it later, as shown in Fig. 2 (a).

hese attacks combining with system flaws may result in severe

onsequences; for example, an impersonated device may harm the

ystem by injecting malicious data and receiving sensitive com-

ands that leak user privacy. 

The BLE standard provides security mechanisms such as pair-

ng and bonding to protect the connection from these attacks. Ide-

lly, a pairing scheme named LE Secure Connections provides link

ncryption, which can effectively prevent adversaries. However, as

he devices are power constrained, they can barely have display

r input capabilities. The Bluetooth pairing process can only use

he mode that adopts default keys, which renders the attackers ef-

ortlessly decrypt the established connections ( Ryan, 2013 ). In ad-

ition, the Bluetooth service on the phone is shared between all

nstalled apps that have corresponding permissions. The coarse-

rained permission issue ( Naveed et al., 2014a ) and co-located app

ttacks ( Sivakumaran and Blasco, 2019 ) may cause unauthorized

ccess. 

Besides the attacks mentioned above, it is worth noting that

 specific MITM attack called relay attack poses a new threat to

he BLE channel. As shown in Fig. 2 (b), the attacker clones the

AC address of the lock, which is used by the mobile to identify

he lock and pretends to be the real lock talking to the mobile.

t the same time, the attacker pretends to be the mobile and

alks to the real lock. The attacker relays the messages, and none

f the entities are aware of the attack. The relay attack on the

LE channel rises from the ranks due to its low attack cost and

igh prevention difficulty. It only requires the attacker to have

wo Bluetooth devices and the capability of transmitting data

etween these two entities over long distances. But detecting and

reventing the attack is non-trivial. Existing approaches includes

easuring the strength of the received signal, detecting the
 c  
ime delay introduced by the attack, and testing for co-presence

hrough ambient sensing. The relay attack jeopardizes users be-

ause the assumption of the device being physically present is

roken by arbitrarily extending the communication distance. 

. Demysfying app-in-the-middle IoT 

This section introduces the function of the components of two

xisting architectures that have been widely discussed in research

apers, and summarizes the security threats they face. By compar-

ng the similarities and differences between the app-in-the-middle

AITM) IoT and the two architectures, we try to answer the ques-

ion: what makes the AITM IoT fundamentally different. 

Many pieces of IoT security research focus on two architectures,

hich we refer to as the cloud-in-the-middle architecture and the

rigger-action platform architecture. We introduce them separately

n Sections 3.1 and 3.2 . A summary of the differences between the

hree types of IoT architecture regarding the functions of the com-

onents is shown in Table 1 . 

.1. Cloud-in-the-middle architecture 

As shown in Fig. 3 (a), a cloud-in-the-middle (CITM) IoT has

hree components, namely: device, vendor cloud, and device com-

anion app. The vendor cloud is the central point that manages in-

eractions with the device. The device communicates directly with

he cloud if it is IP-enabled; otherwise, it uses energy-efficient pro-

ocols such as Z-Wave and ZigBee to connect to a hub/gateway,

hich itself is an Internet-connected device that adapts protocols

nd relays messages between the device and the cloud. To clarify

he function of each component, we elaborate on a typical work-

ng procedure of the IoT system of this architecture. This procedure

s representative since the other two architectures also work sim-

larly or based on it. We use WiFi-enabled devices as an example

o describe the working procedure . The differences brought by WiFi-

nabled devices and hub-connected devices only affect the device

etup step; the effect will be reflected when inspecting the attack

urface. 

a) Device setup and user binding : To be able to access the Inter-

et, the WiFi-enabled device needs to acquire the WiFi credential

nder the help of the companion app. Several schemes, such as

martConfig and Airkiss, can achieve this provisioning. After that,

he device is able to establish a connection with the cloud. The

evice and the user associate with each other by respectively au-

henticating to the cloud, and the binding relationship is created

nd maintained by the cloud. 

b) Device remote control and monitoring : Authenticated users

an remotely view the status of their bound devices and issue
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Table 1 

Three types of IoT architecture and their differences in terms of the functions of their components. 

Architecture Component Feature and function 

CITM IoT ∗ Device IP-enabled or hub-connected; communicate with the cloud directly or via a hub; stable 

connection with the cloud. 

Vendor Cloud Central component; vendor-specific; authenticate users and devices; manage binding 

relationships and temporary authorization; interact with devices; run simple rules that 

provide limited control automation; enforce access policy; maintain audit logs and device logs. 

Device Companion App Device-specific; interface for users to set up, manage, remotely monitor and control devices; 

interface for users to make temporary authorization and revocation. 

Trigger-Action 

Platform IoT 

Device Same as CITM IoT device. 

Platform Cloud Same as CITM IoT vendor cloud (optional); integrate other vendor clouds; support complicated 

automation; run trigger-action rules; apply access control policy of the rules. 

Platform Companion App Same as CITM IoT device companion app (optional); interface for users to manage (i.e., install, 

configure, and uninstall) trigger-action rules; interface for users to associate with other 

platforms. 

AITM IoT ∗∗ Device Resource-constrained; battery-powered; smartphone connected, mostly BLE enabled; 

intermittent connection with the cloud. 

Vendor Cloud Same as CITM IoT vendor cloud except for the automation capability. 

Device Companion App Same as CITM IoT device companion app; interact with devices through the 

smartphone-provided Bluetooth channel; proxy traffic between devices and clouds; involved 

in the entire working process. 

∗ CITM IoT refers to Cloud-in-the Middle IoT architecture as elaborated in Section 3.1 . ∗∗ AITM refers to App-in-the Middle IoT architecture as elaborated in Section 3.3 . 

Fig. 3. Three types of IoT architecture. 
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commands through the device companion app. Besides, the user

can create some simple rules that instruct the cloud to interact

with the device automatically. For example, the user can set a rule

that turns on the conditioner at 7 pm on weekdays. When the time

is up, the cloud will automatically send the corresponding com-

mand. In this way, the system achieves limited automation. 

c) Temporary authorization and revocation : Device owners may

want to share their devices with some temporary users. The owner

authorizes a user to access a device within a specified period and

expects the access automatically revoked after the authorization

expired. The user can also actively revoke the authorization in the

companion app. 

d) Device unbinding : The user can make the unbinding request

in the companion app or reset the device to unbind the device. 

From the above description, we extract the features and func-

tions of the three components of the CITM IoT architecture. The de-

vice is IP-enabled or hub-connected; they collect data and perform

commands using sensors and actuators, and communicate with the

cloud directly or via a hub. The cloud is central to the system, re-

sponsible for authenticating users and devices, managing binding

relationships and temporary authorization, enforcing access poli-

cies, interacting with devices, and maintaining audit logs (to an-

swer the question ”Who did what, where, and when?”) and device

logs (information about device lifecycle events, e.g., connections,

errors); it also supports limited automation The app is device-

specific, supporting at most a range of devices from the same ven-

dor; it provides the interface for users to set up and manage de-

vices, remotely monitor and control devices, and make temporary

authorization and revocation. 

 

Attack surface. Existing researches have explored the vulnerabili-

ies of CITM IoT from many aspects. We only consider design flaws

ere since we want to draw lessons for the security analysis of

ther IoT architectures; hence the implementation issues (e.g., the

AF vulnerabilities in firmware and apps) are out of the scope. 

• Device backdoor: Some devices include a tiny web cloud in

their firmware that allows users to access the device directly.

The device implements only a simple username/password au-

thentication scheme, which entirely relies on the limited com-

puting and storage resources of the device, completely bypass-

ing the rich resources and security functions that the cloud can

provide. Even worse, the device may include a deliberately hid-

den authentication interface, and anyone possessing a super ac-

count can fully access the device ( yearinfo ). 

• Device discovery and network access provisioning: For WiFi-

enabled devices, WiFi credentials can be sniffed by a local wire-

less attacker during WiFi provisioning ( Li et al., 2018 ); a user

may wrongly choose the malicious device that attacker put

nearby with the same identifier as the user’s device, which also

results in WiFi credential leakage ( Valente and Cardenas, 2017 ).

For hub-connected devices, the process of a device establishing

a connection with a hub can be vulnerable; for example, an at-

tacker can launch a downgrade attack when a Z-Wave device

pairing with a hub, which grants the attacker full access to the

device ( Fouladi and Ghanoun, 2013 ). 

• Device authentication: During device binding, what credentials

the cloud use to authenticate the device influence the security

severely. Devices leveraging DeviceID and other hard-coded or

easily-inferred device identifying information are vulnerable to
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secret leakage, thus resulting in a bunch of attacks. For exam-

ple, an attacker possessing leaked DeviceIDs can impersonate

the original device, thus launching the data injection, privacy

breach, and denial-of-service attacks; the attacker can preemp-

tively bind a real device with his account, making the user

holding the genuine device not able to bind; the attacker can

also send unbinding requests, causing the user to lose control

of the device ( Chen et al., 2019b; Zhou et al., 2019 ). 

• Cloud: The cloud may not enforce a strict check on the message

received from the device; for example, the cloud accepts bind-

ing requests even if the device is already in the bound state,

allowing the attacker who sends the binding request to take

control of the device; the cloud may not associate the device-

cloud connection with the user account, making an attacker

with an attacker account capable of manipulating the connec-

tion ( Zhou et al., 2019 ). 

• Device-Cloud app-level protocol: The app-level communication

protocol used between the device and the cloud have a signif-

icant impact on security. For example, if MQTT is deployed, a

temporary user can plant a backdoor while authorized to use

the device legally. When the specific trigger event occurs, the

pre-set command will be executed even if the user who is-

sued the command has been revoked from accessing the device

( Jia et al., 2020 ). The distinguishability of status report mes-

sages and keep-alive messages allows an attacker to intention-

ally block status report messages, which blinds the cloud from

acquiring information from the device and endangers the log

integrity ( OConnor et al., 2019 ). 

We consider the user is properly authenticated by the cloud,

nd the communication channel between the device and the cloud

s well protected (e.g., SSL), as they have been fully discussed in

ast research. 

.2. Trigger-action platform architecture 

As shown in Fig. 3 (b), the trigger-action platform architec-

ure also contains three components: device, platform cloud, and

latform companion app. Its most significant difference from the

loud-in-the-middle architecture is the function of the platform

loud. Fundamentally, the platform cloud works the same as the

endor cloud in the way that it interacts with the platform-

roduced device, while the difference lies in that the platform

loud can integrate other vendor clouds hence controlling a myr-

ad of devices. Furthermore, the integration brings the possibility

f complicated automation, which is implemented in the form of

rigger-action rules (SmartThings name them SmartApps). All in

ll, the trigger-action platform architecture can be seen as built on

op of the cloud-in-the-middle architecture while emphasizing the

rigger-action rules. 

From the view of component functions, the platform cloud can

e seen as two parts: (1) functioning as vendor clouds, but sup-

orting complex automation rules; (2) functioning as third-party

ntegration clouds that run trigger-action rules while device in-

eraction achieved by invoking vendor cloud interfaces. Therefore,

part from playing the same role as they do in the cloud-in-the-

iddle architecture, the platform cloud and the platform com-

anion app also support complicated automation: The cloud runs

rigger-action rules that automatically monitor and control associ-

ted devices, and enforce access control policies that specify which

ules can access which devices and perform which actions; The

latform companion app provides interfaces for the user to man-

ge (i.e., install, configure, and uninstall) trigger-action rules and

ssociate with other platforms. 
Attack surface. The attack surface of the cloud-in-the-middle IoT

s applicable to trigger-action platform IoT. Here we concentrate on

he threats posed by the introduction of trigger-action rules. 

• Cloud access control: the cloud control which actions a rule

can perform on devices by granting permissions. The permis-

sion may be designed too coarse-grained such that a rule can

abuse the permission to cause unexpected results; for example,

a rule that only requires the lock permission is granted with the

permission that can perform the unlock action ( Fernandes et al.,

2016a ). 

• Trigger-action rules: a rule may request more permission that

it needs, and include implicit code paths that execute behav-

iors beyond the user’s expectation. Multiple rules may conflict

on controlling the same device or produce implicit inter-rule

trigger-action chains. 

• Protocol: many platforms use the OAuth protocol to integrate

vendor clouds. The OAuth token is critical since it can be

used to control bound devices. The platform manages token

in a centralized fashion, which can cause massive damage

once the platform is compromised and the token is leaked

( Fernandes et al., 2018 ). 

• Companion app: The app may embed the OAuth client ID and

secret that used to integrate vendor clouds, which would result

in OAuth token leakage and further endanger bounded devices

( Fernandes et al., 2016a ). 

.3. App-in-the-middle architecture 

As shown in Fig. 3 (c), what makes app-in-the-middle IoT differ-

nt is the relative position of the app in this architecture: it locates

etween the device and the cloud. The device depends on the app

o proxy traffic to and from the cloud. This app-reliant feature pre-

ents the cloud from automatically executing commands to control

he device; consequently, the app-in-the-middle IoT cannot inte-

rate into the trigger-action platform IoTs. 

Devices in this architecture are resource-constrained, battery-

owered, often demand long standby time, and have limited wire-

ess low power communication capabilities. To leverage the smart-

hone as a hardware gateway, they often choose the Bluetooth Low

nergy (BLE) as the wireless communication protocol. The device

ompanion app communicates with the device through the Blue-

ooth channel the smartphone provides. 

Attack surface. We enumerate possible attacks that may endan-

er the app-in-the-middle IoT, based on the attack surfaces of the

bove two architectures. The entire workflow of the AITM IoT faces

imilar threats due to the similarity in the objectives of the all IoT

ystem and the function of the cloud. But the role the app plays

ndoubtedly complicates the security situation. 

• Device direct access: the device may accept connection from

any BLE-enabled apps with none or simple authentication

mechanisms. 

• Device discovery and binding: the app may wrongly choose the

device with the same identifier as the user’s device; the process

of device pairing with a smartphone may leak the encryption

key, causing a device impersonation attack. 

• App-device communication channel: the Bluetooth channel is

managed in a way that all the authorized apps share the same

channel by the Android sytem, which leads to the co-located

app attacks that a malicious app who co-locates with the de-

vice companion app and is permitted to use the Bluetooth

channel can access the device ( Sivakumaran and Blasco, 2019 ).

The root cause of this attack is that the smartphone pro-

vides coarse-grained permission when control which app can

access the channel that app communicates with the device
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Table 2 

The attack surface of three types of IoT architecture. 

CITM IoT Trigger-Action Platform IoT AITM IoT 

Device • Device backdoor: interface for direct access with weak authentication; hidden authentication interface. 

• Device discovery and network access provisioning: device identification; WiFi provisioning; hub-connected device pairing. 

• Device identification: identifying information presented to the cloud may be hard-coded or easily-inferred. 

- - • Device direct access through Bluetooth 

channel 

• Bluetooth connection, pairing, and binding 

Cloud • Device authentication: information used to authenticate the device may be falsifiable. 

• Device state management: may allow illegal device state manipulating messages. 

• Device-user binding management: may allow binding status change by non-owner users. 

• Temporary authorization management: authorization may be irrevocable. 

• Log Integrity: any event that deviates from the preset can compromise log integrity. 

- • Cloud access control (coarse-grained 

permission) 

• Device-cloud connection 

• Trigger-action rules (over-privilege; 

inter-rule conflict and collusion) 

App - 

- • Leak hard-coded sensitive information (e.g. 

OAuth secret) 

• App-device communication channel (e.g. 

co-located app attack) 

• Sensitive information leakage (e.g. device 

access token) 

Protocol • Device-Cloud app-level protocol: flawed mechanism; distinguishable messages. 

- • OAuth token leakage • Weak pairing • BLE vulnerabilities 

• App-device application-level protocol 
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( Naveed et al., 2014a ), similar to the cloud managing the

trigger-action rules. 

• Device-cloud connection: the communication between the de-

vice and the cloud may not well protected since the device is

the resource-constrained. The app may manipulate the commu-

nication between the device and the cloud, making the device

and the cloud out of synchronization. 

• Device authentication: the information used by the cloud to au-

thenticate the device can be manipulated by the app, which can

cause device impersonation attack, privacy breach, and data in-

jection attack, etc. 

• Temporary authorization and revocation: the app may leak sen-

sitive information that enables the temporary user to keep ac-

cessing the device after the authorization revoked. The app may

not successfully inform the cloud of the authorization revoca-

tion, rendering the temporary user access the device stealthily

( Ho et al., 2016 ). 

• Cloud log integrity: the app may blind the cloud if it deliber-

ately blocks certain messages. 

By far, we have introduced all the three architectures. A com-

prehensive summary of possible threats of each architecture is

shown in Table 2 . Despite similarities, the fact that the app may

manipulate the communication between the device and the cloud

makes the app-in-the-middle different from other architectures,

and its security needs to be scrutinized, especially around the role

the app plays. 

4. Exploring AITM security 

In this section, we describe our threat model and the security

goals of app-in-the-middle IoT. We start the analysis by limiting

the companion app to a software gateway and abstract the token

concept to ease the analysis. After that, we complicate the role of

the app and delve into the app-in-the-middle IoT security. 

4.1. Threat model and security goals 

Threat model. We assume three types of adversaries. 
- Co-located attackers that co-locates with the device companion

app on the Android phone, either controls a malicious app

that has been granted with Bluetooth permissions or manip-

ulates the traffic of the companion app. 

- BLE attackers that locate near the smartphone, with wireless

passive and active attack capabilities, including sniffing, jam-

ming, and packet injection. 

- Malicious temporary users that attempt to maintain access af-

ter the authorization is revoked. They have physical access

to the device and complete control of the device companion

app. 

- We consider these adversaries can obtain the companion

app and the device of the same type as the victim, and

can extract any information from the app and the device

they possess, using methods including reverse engineering,

firmware extraction, and even runtime debugging; we refer

to them acknowledged adversaries when emphasizing these

abilities. 

Considering the component features, functions, and attack sur-

ace of AITM IoT summarized in Section 3.3 , we expect the system

o achieve the following security goals. 

Authentication. The system should provide the cloud with au-

hentication schemes that properly authenticate the device to de-

eat device impersonation, data stealing, and data injection attacks.

he authentication information can be free from being tampered

y the co-located and BLE attackers, and can not be utilized by

alicious temporary users. 

Access control. As mentioned in Section 3.3 , co-located attackers

an access the device due to the coarse-grained permission the An-

roid system enforces. With adapting the operating system not an

ption, we consider the authorization scheme should be provided

y the app-level design. This authorization scheme should not only

efeat co-located attackers but also support secure device sharing,

rotecting systems from malicious temporary users. 

Availability. Temporary authorizations should be guaranteed to

e successfully revoked, and the cloud can obtain complete and

ntampered audit logs and device logs. 



H. Liu, J. Li and D. Gu / Computers & Security 97 (2020) 1020 0 0 7 

Fig. 4. The token-centric abstract model. 
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.2. Security analysis of a simplified AITM IoT 

To ease the security inspection, we first simplify the discussion

y restricting the function of the app. Besides acting as a CITM

ompanion app, the simplified AITM companion app only plays

he role of a network-layer gateway that forwards whatever it re-

eives. We conduct security analysis by introducing the token con-

ept. The token reflects properties that can make the scheme meet

he security goals. 

From the perspectives of a device already in use, what it does

s performing actions as the received valid commands say (e.g., a

mart lock unlocks the door), reporting information (e.g., a ther-

ometer reports the current temperature), and notifying results

e.g., an oven has been successfully started) to the cloud. Taking

 smart lock as an example, it receives an unlock command from

n insecure link, verifies it, performs the action, and notifies the

peration results, as shown in Fig. 4 (a). We argue that every sent

nd received message must come together with a token that bears

ertain properties sufficient to prove its validity. The reasons are:

a) devices are power limited, messages are infrequent short-burst

ata rather than stream data for an extended period of time; hence

ersistent connections are not applicable. (b) Transport layer secu-

ity is also not an option, because one-way SSL can not provide

evice authentication and two-way SSL is resource-intensive. As

ig. 4 (a) shows, the Bluetooth smart lock communicates with the

loud through the lock companion app, which we consider as a

oftware gateway providing an insecure link. The user issues the

nlock command via the companion. The cloud receives the re-

uest, checks the access policy to make sure the user is autho-

ized to access the device, generates the token, and responds with

 valid command. The lock verifies the command, performs the un-

ock action, generates the token for notification, and notifies the

ction results. That is how an already-working simplified AITM IoT

orks. 

The abstracted workflow is depicted around the token, which

hould hold several properties to defend against attackers and

chieve the device-cloud secure communication. 

Mutual authentication. The token must reflect the identities of

oth communication parties that are mutually authenticated. 

Unforgeability. The token can not be forged by attackers, as the

loud and the device should be the ones capable of generating

okens. 
Resistance to replay attack. The token must contain enough in-

ormation for the entity to verify its freshness. Those that have

een used should not be accepted again. 

According to the practical cases we analyzed, tokens that meet

he requirements fall into two types: 

(a) The response of the challenge-response scheme: as shown

n Fig. 5 (a), the lock generates a signed challenge, and the cloud

esponds by signing the challenge together with other information

e.g., the unlock command, DeviceID). The key used for signature

eneration and verification can be symmetric or asymmetric. They

re pre-stored in the device and the cloud as trust anchors (which

s necessary for a cryptographically secure scheme). The signature

an be used to authenticate the other party, and the token is un-

orgeable since an attacker has no knowledge of the trust anchor.

y guaranteeing the randomness of the challenge and that the de-

ice deprecates previous challenges once a new challenge is sent,

he replay attack and delayed message attack are prevented. 

(b) Commands encrypted by key d−c : with what is shown in

ig. 5 (b) as an example, key d−c is the symmetric key shared be-

ween the device and the cloud. It can be the symmetric trust an-

hor or negotiated with the cloud on the basis of the asymmet-

ic trust anchor at the time of the device initialization. The token

s generated with the key d−c encrypting necessary information (e.g.,

he unlock command, counter, timestamp). The token inherits the

utual authentication and unforgeability property from the key d−c .

he key d−c can generate multiple tokens. A counter or a timestamp

s contained in the token to prevent replay attacks. The random

s not applicable here, because it is not previously known to the

evice, and the device storing all the previously received token is

ot realistic. The counter on the cloud-side increments its value

ach time a token is generated. The device updates its counter by

etting the value to what contained in the recently received valid

oken and rejects the token whose counter value is less than the

evice maintains. If the timestamp is used, a valid duration is pre-

et, and the clock of the two entities are synchronized, with at-

ackers unable to tamper with. The attack window depends on the

uration value, which can be carefully set to achieve the balance

etween security and availability. 

A summary of how these two types of token meet the require-

ents is listed in Table 3 . 

Discussion. Zhou et al. have revealed that an attacker can fake

 device by using the victim device’s device ID, which is solely
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Fig. 5. Two types of token. 

Table 3 

A brief summary of how the two types of token meet the token requirements. 

Scheme Token properties Approaches and prerequisites 

Challenge-response scheme 

with response as the token 

Mutually authenticated Both challenge and response are signed with the trust anchor; the trust anchor is 

unique for each lock and well protected. 

Unforgeable The challenge is cryptographically random, which means unique and unpredictable; 

the trust anchor is well protected. 

Resistant to replay attack The challenge is unique, and the unanswered challenge becomes invalid once a new 

challenge is issued. 

Command encrypted by key d−c 

as the token 

Mutually authenticated The key d−c is the trust anchor and negotiated from the trust anchor. 

Unforgeable The used parameters and algorithms are cryptographically secure; the key d−c is not 

leaked. 

Resistant to replay attack The counter is maintained properly; the timestamp and valid duration is securely 

chosen and validated, and the clock is synchronized. 
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determined by the information that can be collected with little

effort. Combined with other flaws, a phantom device can cause

attacks such as remote device hijacking, remote device substitu-

tion, remote device DoS, and illegal device occupation ( Zhou et al.,

2019 ). In this paper, we also deal with these issues as we try to

figure out the necessary conditions of a secure device-cloud con-

nection But we abstract the device ID and associated information

as the concept of token, and defeat possible attacks by constraining

the properties of the token. Through utilizing the token concept, it

will be much simpler to analyze the more complicated app-in-the-

middle scheme. 

4.3. Security of the app-in-the-middle IoT 

What brings the complication. In practice, the app can not be re-

garded merely as a transparent network-layer forwarder. From the

perspective of the application-layer device-cloud connection, it is

cut into two parts by the app, as shown in Fig. 4 (a). The mutual
uthentication between the app and the cloud, and between the

pp and the lock is required. The app can establish a secure chan-

el with the cloud and authenticate with each other by adopt-

ng the mature scheme in which username/password authentica-

ion information is transmitted in a certificate pinning enabled SSL

onnection. However, the low-level BLE channel can not prevent

LE and co-located attacks; the mutual authentication between the

pp and the lock at the app-level is needed . 

Besides, the usage scenarios also affect the role of the app.

or those applications like bike-sharing, rental-sharing, the user-

evice binding relationship is weak. The user authenticates to the

loud to request a token for the temporarily chosen device, and

he app forwards the received token to the lock and then finishes

he interaction. For applications like smart door locks, the binding

elationship is relatively strong. The device belongs to its owner,

ho may not want the cloud to have the ability of token genera-

ion. Hence some critical information is retained in the app instead

f the cloud out of privacy concerns. Meanwhile, the owner may



H. Liu, J. Li and D. Gu / Computers & Security 97 (2020) 1020 0 0 9 

Table 4 

The summary of the two application scenarios. 

Weak Strong 

Typical application scenario Bicycle sharing, hotel keyless check-in Smart door locks 

Features • One-time access • Persistent access 

• No sharing • Secure sharing to temporary users 

• No app-device binding • App-device binding 

• Users demands high reliability because they 

are very likely to be charged for using the 

provided service 

• Offline availability 

• Owners demand partial control out of privacy concern; 

demand secure sharing and revocable authorization to 

temporary users 

Security goals Authentication • App-device authentication (achieved by 

indirect authentication through token 

bearing) 

• App-device authentication (device-app key negotiation via 

cloud during secure binding) 

• Device-cloud authentication (met by mutual 

authentication property of token) 

• Device-cloud authentication (token mutual authentication) 

Access control • Whether user can access device (cloud 

enforces, authorization by issuing token) 

• Whether user can access device (cloud enforces, by 

referring to device-user binding relationship, and issuing 

token share) 

• Whether temporary user can access device (cloud enforces, 

by referring to user-device-sharedUsers list, and issuing 

token share; app involves, by issuing token share) 

Availability • High reliability (vulnerable to relay attack) • Offline availability (combining app token share and cloud 

token share) 

Attacks • BLE attacker • Exfiltration of information stored in app 

• Co-located attacker • Malicious temporary user attacker 

• Acknowledged attacker 

• Relay attack 

d  

u

 

f  

w  

i  

a  

t  

b  

t  

l  

r  

c  

p  

c

4

 

w  

a  

t  

i  

a  

c  

l  

b  

t  

r

 

r  

c  

G  

e  

t  

r  

a  

r  

a  

m  

t  

a  

i  

t  

a  

n  

t  

a  

o

 

u  

r  

k  

t  

d  

n  

M  

a  

a  

a  

c  

T  

p  

p  

i  

r  

t  

t  

d  

h  

f  

d

4

 

w  

f  

t  

k  

t  

s  
emand the function of securely sharing the lock to a temporary

ser with the help of the cloud. 

Different scenarios involve different working processes and dif-

erent security requirements. For example, the criteria for judging

hether a smart TV is secure or not depends on the environment

n which it is located. If the TV is in a home environment, it can be

ccessed by users in the same local area network to realize func-

ions like screencasting. But if it is in a public environment, such as

eing used by businesses to play promotions and advertisements,

hen it should be accessible to no one but the administrator. Simi-

arly, for devices in the app-in-the-middle architecture, their secu-

ity requirements should also change according to different appli-

ation scenarios. Therefore, we summarize two typical types of ap-

lication scenarios of the app-in-the-middle architecture, and dis-

uss the security separately ( Table 4 ). 

.3.1. Weak user-device binding relationship 

This kind of relationship indicates a typical application scenario

here the cloud authorizes its authenticated users the one-time

ccess to its resources, such as bicycle sharing, car sharing, and ho-

el keyless check-in, etc. Therefore, no app-device binding process

s involved, and no device sharing since all users are temporarily

uthorized. Besides the goal of establishing a secure device-cloud

onnection, high reliability is demanded by the user who is very

ikely to be charged for using the provided resource. It needs to

e guaranteed that the chosen resource is successfully authorized

o the authenticated user, and the authorization result is correctly

eported to the cloud. 

Each time a user uses the service, the user finds an available

esource offline, authenticates himself to the service provider (the

loud), and requests authorization for the resource on the app.

enerally, the working process, with that shown in Fig. 6 as an

xample, includes (a) the app authenticating itself to the cloud, (b)

he app acquiring the lock ID from the out-of-band channel and

equesting the corresponding MAC address from the cloud, (c) the

pp-building BLE channel with the lock, (d) the app requesting a

esource (the lock) of the cloud, (e) the cloud authorizing the us-

ge by issuing the token to the user, the app issuing unlock com-

ands together with the token, and (f) the app reporting the au-

horization result to the cloud. The procedure of token generation
nd verification (step (d) and (e)) inherits the schemes proposed

n the simplified version. Therefore, secure device-cloud connec-

ion at the app level is achieved. The app-device authentication is

chieved indirectly under the help of the cloud since they share

o secret beforehand. The device trusts whoever sends the valid

oken since it counts on the cloud to have correctly done the user

uthentication and authorization the cloud would issue the token

nly when the user passes the access policy check. 

The three properties of the tokennamely mutual authentication,

nforgeability, and resistance to replay attackpartly meet the secu-

ity goals proposed. The device authenticates the app through to-

en ownership. Therefore, it can defeat co-located attackers, since

he co-located app not possessing the token can not control the

evice. The reliability is not achieved since the relay attack can

ot be prevented. The app identifies the device through the ID and

AC address mapping relationship. The device ID information is

cquired from the out-of-band channel, for example, a QR code or

 string of numbers attached to the device. The corresponding MAC

ddress is obtained from the cloud. The app establishes Bluetooth

onnection with the device that is identified by the MAC address.

he relay attack breaks the user’s assumption of the device being

hysically present, which can not be handled at the app-level. A

ractical case is demonstrated in Section 5.3.2 . As for availabil-

ty, the results of the action are not guaranteed to be correctly

eported to the cloud. As the synchronization of the device and

he cloud relies on the mobile gateway, the cloud may not receive

he status report after a token is issued if the user deliberately shut

own the network or the network simply fails. Therefore, the cloud

as to adopt the policy that considers the authorization is success-

ul by default unless a fresh status report message indicating the

evice status is received. 

.3.2. Strong user-device binding relationship 

This kind of relationship indicates a typical application scenario

here the device belongs to the user. The user demands privacy

rom the cloud and wants to be in a dominant position when con-

rolling the device. Therefore, the cloud transfers part of its to-

en generation capability to the mobile app instead of possessing

he full capability of managing the device as in the weak binding

cenario. The user leverages the capability of the cloud, such as
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Fig. 6. The working process of an app-in-the-middle unlocking scheme that is used when the weak binding relationship between the user and the device is required. 

Fig. 7. The working process composition of the scheme that is used in the user-device strong binding relationship. 
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maintaining access logs, authorizing, and revoking the access of

temporary users, making it easier and more convenient to man-

age the device. Besides, the user demands high usability of the de-

vice. The device should function normally when the user encoun-

ters temporary network failure. For example, the user should still

be able to unlock the door if the app has no Internet connection

for a short period of time. We name this requirement as offline

availability . 

The complete working flow includes device initialization and

user binding process, normal usage process, temporary sharing,

and authorization revocation process, as shown in Fig. 7 , with

a smart door lock as an example. The device is initialized and

bond with the user on first use, and controlled by the app dur-

ing normal use. It can be temporarily shared with another user,

whose authorization can be revoked at any time. During the de-
ice initialization and owner registration process, the app estab-

ishes a BLE bonding connection and negotiates a secret key (we

enote it as key d−a ) with the device with the help of the cloud.

ventually, the user is registered as the owner of the lock and

eady to control the lock with the key d−a being the cornerstone of

ecurity. 

We consider secrets that are stored in the app can be ex-

racted using a combination of smartphone vulnerability exploits,

alware, malicious third-party apps, etc. Meanwhile, the strong

ser-device binding relationship scenario requires the cloud not to

ossess complete device controlling capability out of privacy con-

erns. Therefore, the secure design would be that the token gener-

tion involves both the locally stored secrets in the app and ones

eceived from the cloud. This design prevents the attacker from

etrieving the critical information (for example, the key d−a ) from
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Fig. 8. A secure scheme to negotiate key d−a . 
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he app hence endangering the whole system whatever secure the

ther part of the design is. At the same time, the cloud does not

ave full control of the device since the critical key d−a is retained

n the app. 

A secure design. We describe the design in three stages accord-

ng to the working process shown in Fig. 7 . Same as the simpli-

ed design, the pre-shared root key (symmetric or asymmetric)

etween the device and the cloud is the security cornerstone of

he whole design. 

• In the device initialization and user binding process, the device

and the mobile launch a BLE bonding process and establishes

a secure BLE channel, in which the device and the app further

negotiate a shared secret key key d−a with the help of the cloud,

as shown in Fig. 8 . The app informs the cloud the device-app

binding relationship. A secret key key d−c is either previously

shared between the cloud and the device (the root key) or ne-

gotiated via the app during this process. 

• In the unlocking process, the token generation is the main con-

cern. The token can be time-based and counter-based, which

aims to prevent token replay attack. If the time-based scheme

is adopted, the cloud receives the unlock request from the

app and returns a token share Share c = T OT P (key d−c , C T ) , C T =
� T −T 0 

T x 
� where T is the current time, T_0 is the initial time and

T_x is the valid time span that both the lock and the cloud has

agreed on. Otherwise, if the counter-based scheme is adopted,

the token share Share c is determined by the counter value, that

is, Share c = T OT P (key d−c , C Value ) . The app generates the token

by taking the Share c , its token share Share a ( key d−a ) and the

challenge received from the lock or the predefined unlock com-

mand as input. 

T oken = F (Share a , Share c , C MD/C hal l enge ) 

• In the temporary sharing and authorization revocation process,

the app notifies the cloud which user will be temporarily au-

thorized and generates Share a ′ for the temporary user. The tem-

porary user can receive the Share c from the cloud if the autho-

rization is still valid. The owner can revoke the authorization

at any time by simply notifying the cloud to stop issuing token

shares to the temporary user. 

The security of the key d−a is essential. The device and the app

egotiate key d−a in the lock initialization and user binding process.
he device and the app must be mutually authenticated with the

elp of the cloud. That is, the app confirms the identity of the

evice by trusting the cloud to verify the signature of the cloud,

hich is Signature LockID −KeyShare D 
in the example, and the lock con-

rms the identity of the app by trusting the cloud to authenticate

he app, with the app having access to the signature signed by the

loud (that is, Signature LockI D −ClientI D )as a piece of evidence. There-

ore, the key d−a , which derives from the KeyShare D and KeyShare A ,

ears the property of the app-device mutual authentication. The

egotiation of key d−c is based on the existed trust between the

ock and the cloud, and its security is not affected by the insecure

ommunication channel. 

The offline availability is achieved. The token is mainly gener-

ted from the two token shares Share c and Share a . The Share a as-

ures that the app participates in the token generation, and the

loud can not control the lock without the knowledge of the user.

he time-based Share c introducing an attribute of token validity

eriod makes the token acceptable only in a predefined period of

ime. This attribute is determined by the cloud such that tempo-

ary user authorization and revocation can be enforced securely

y the cloud. Meanwhile, the token validity period makes the app

an work offline as long as the Share c is not overdue. The counter-

ased Share c facilitates the app to cache a few token shares ahead

f time and hence making the offline availability realizable. 

However, when it comes to the temporary user authorization

nd revocation, the temporary user may act in a malicious way by

aching a tile of token shares. Even if the user has notified the

loud to revoke the authorization, the cloud has no reliable ap-

roach to inform the lock that the pre-issued token shares (counter

alue) are invalid, in the circumstances that the temporary user

s the only one that may get approach to the lock for a period

f time. A scheme combining the time-based Share c and counter-

ased Share c can effectively control the attack window. 

.4. Discussion 

We use the token concept to ease the analysis of the se-

urity of AITM IoT. The properties of the token are closely re-

ated to the security goals that AITM IoT must achieve. Notably,

man et al. (2018) also adopted a token-based scheme, featuring

ts dynamic energy-security level, i.e., flexible key size, when au-

henticating IoT devices. In their work, the authentication is based
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Fig. 9. Analyzing the token construction. 
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on the physically unclonable functions (PUFs), which makes the

scheme free from storing secrets, hence resistant to physical at-

tacks. The protocol leverages the OAuth 2.0 token together with

different key sizes to achieve energy-security scaling. And formal

verification of the correctness and security analysis of the proto-

col is presented. In contrast, the token in our paper is more like

an abstract concept. We state properties a secure scheme should

meet, without specifying a concrete implementation. We exclude

physical attackers from our threat model and take the pre-installed

key as trust anchors, considering most existing consumer IoT de-

vices are incapable of defending this kind of attack. However, de-

spite these differences, the token-based protocol is of the same

purpose as the secure design we proposed in Section 4.3.2 . The for-

mal verification of the correctness and security analysis presented

can be seen as proof of the realizability of our proposed secure

design. If we treat the app as another device that needs to es-

tablish a secure connection to the device, we can seamlessly im-

plant the token-based protocol into our work to authenticate the

entities and negotiate key d−a . The token-based scheme proposed

in Aman et al. (2018) can be seen as one of the secure implemen-

tations that apply for the scenario we talk about. 

For practical AITM IoT systems to be secure, the cryptographic

operations can not be circumvented. The device must correctly ver-

ify the received token. For devices, lightweight ciphers such as el-

liptic curve cryptography (ECC), Simon, and Speck can be adopted

to meet the resource constraints. The time required for ECC scalar

multiplication, one-way hash function, and symmetric encryption

are 17.1 ms, 0.32 ms, and 5.6 ms, respectively ( Sadhukhan et al.,

2020 ). We can compute the computational overhead by identify-

ing the primitive operations used in the secure scheme. Moreover,

from the cases we studied in Section 5.3 , some devices have al-

ready applied cryptographic algorithms (but in the wrong way).

For these devices, the overhead of deploying a secure solution is

negligible. All changes in the scheme are easy for the app to ap-

ply since the update can be easily delivered. The firmware can be

updated through the app. 

5. Practical analysis and issues 

In this section, we introduce rules that must be met, and the

analysis approach we use to analyze the real world AITM IoT. Then

we present case studies, showing that violating these rules can

cause unauthorized access, information leakage, etc. 

5.1. Security rules 

We depict rules that for weak binding systems and strong bind-

ing systems. 

- Rule W#1: Relay attack is essentially unsolvable by app-level

schemes. Additional out-of-band information should be con-

sidered to confirm the presence of the device. 

- Rule W#2: Tokens should be counter&timestamp-based or

challenge-response based. Otherwise, they can be replayed.

If challenge-response based, the device must only accept the

recently issued challenge to defeat the delayed message at-

tack. For counter-based schemes, the device must keep the

freshest counter value in the record and reject tokens with

previous counter values 

- Rule W#3: Tokens should be generated at the cloud. Other-

wise, the acknowledged attacker can use the app code logic

and arbitrarily access the device. 

- Rule S#1: The device and the app must be mutually authen-

ticated with the help of the cloud during the device initial-

ization and user binding process. That is, the key d−a bears

mutual authentication. 
- Rule S#2: The key d−a must not be exposed on the BLE chan-

nel. 

- Rule S#3: The key d−a must not be exposed to the temporary

users. 

- Rule S#4: There is no secure way to simultaneously achieve

the goal of offline availability and strictly revocable autho-

rization. 

.2. Analysis approach 

We conduct the analysis from two aspects: the construction of

he token and the scheme used to implement temporary authoriza-

ion if the functionality exists. We start with the BLE traffic and the

pp and turn to the device firmware for extracting the semantics

f the token generation if necessary, as shown in Fig. 9 . 

.2.1. Traffic analysis 

Tokens are doomed to appear in the BLE traffic. We start by

apturing and analyzing the BLE traffic. The traffic may or may not

e encrypted, which depends on whether the BLE pairing process

s initiated by the app. The class of encryption is determined by

he input/output capability of the app and the device. Considering

he power constraint and the convenience of use (pairing needs to

ress the button or compare the number displayed on the lock and

he app), usually pairing of class 0 or no pairing is used in practice.

he pairing of class 0 uses a fixed key that we can use to decrypt

he traffic, which means no encryption protection at the link level.

e use differential traffic analysis to help distinguish the fixed part

rom the random part of the command. 

.2.2. App analysis 

To recover the generation process of the token, we need to ex-

ract relevant information from the app. For Android apps, we use

ppspear ( Yang et al., 2015 ) to unpack the app in case that it is

acked or obfuscated. We dynamically instrument some specific

lasses and monitor the parameter of the writeCharacteristic API.

nce the parameter contains the fixed part of the command, we

an locate the random part and forwardly slice the trace. The chal-

enge is how to recover the semantics of the operation of the to-

en. The generation of token involves encryption. The encryption

ey can be observed in the trace. 

.2.3. Firmware analysis 

For those systems in which the app forwards messages back

nd forth between the cloud and the lock, the key information can

nly be obtained from the firmware. Besides the obtainment of the

rmware and decompiling the code, the challenge of the firmware
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nalysis lies in three aspects: (1) locate the code that handles the

oken; (2) identify the cryptographic algorithms that are used to

enerate or verify the token; (3) recover the full logic of token gen-

ration and verification. 

.2.4. Vulnerability evaluation 

At the traffic level, we replay the commands at different inter-

als to test if the device accepts the reused token and obtain the

oken timeout information. We concentrate on app analysis since

he information obtained from the traffic is limited and the diffi-

ulty in firmware acquisition. We inspect the traces to determine if

ryptographic misuses exist, for example, to check whether a hard-

oded key is used to encrypt the token share. If the server share

s found to be part of the token, we reuse it multiple times to

nd out if the server has a mechanism to limit the lifespan of the

hare. For the strong binding scenario, we focus on the device ini-

ialization stage that negotiates key d−a . If no authentication check

e.g., signature verification) instructions are found in the trace be-

ore the point where the key is used for encryption, we consider

t vulnerable to man-in-the-middle attacks. If the temporary au-

horization function exists, we dynamically instrument both of the

pp running with the owner account and a temporary user account

o obtain the log of the entire process to assess if the token is re-

ocable. By comparing two traces, we check whether the owner’s

ey d−a , which is found in one trace, is also used in the other trace.

The analysis is semi-automatic, relying on the analysts’ involve-

ent to set up the device, interact with the app, and config-

re instrumentation rules. Automatic testing tools like The Mon-

ey ( yearinfo ) are available to trigger interactions. However, it will

ncrease the size of the trace, which makes the analysis of the

race difficult. Likewise, we could use preset instrumentation rules

o improve automation, but it will reduce the accuracy of the

race. The automation is also limited when identifying vulnerabili-

ies from the trace. Inferring the semantic of each component that

mpacts the token (for example, identifying the ECDH key agree-

ent protocol and the negotiated key from the trace) is nontriv-

al. Nonetheless, well-studied cryptographic misuses (such as hard-

oded key, non-random IV, and short key sizes) can be automati-

ally identified from the trace. The instrumented app runs about

wo times slower to generate the trace, which is better than An-

roid’s debugging infrastructure ( Li et al., 2014 ). 

.3. Case studies 

.3.1. Weak binding #1 

The application scenario is motor-bike sharing. The unlock com-

and (token) is a combination of fixed strings hard-coded in the

pp. It violates rule W#2 by not implementing any scheme to de-

eat replay attacks. Therefore, BLE attackers and co-located attack-

rs can sniff the token, and acknowledged attackers can reuse the

pp logic to infer the token. It violates rule W#3 by completely

enerating the token at the app-side, hence acknowledged attack-

rs could reuse the app logic to generate tokens at will. 

.3.2. Weak binding #2 

This is a bicycle sharing application. The user scans the QR

ode on the bike, authenticates to the cloud, and requests the cor-

esponding token. The token is the challenge-response type that

eets all the security requirements. But it is vulnerable to the re-

ay attack, which is the fundamental flaw that can not be tacked

y app-level security schemes. The attacker can put the QR code

f Bike A on Bike B and set a cloned device with the MAC address

f A near B. The user scans the fake QR code, obtains the token

or A, connects the cloned device, and sends the token. Once the

loned device received the token, it transmits the token to the at-

acker, and the attacker can use the token to unlock Bike A. The
ser is charged for obtaining the token, but the device he intends

o use is still locked. This case violates the rule W#1 since no extra

nformation is provided for the user to confirm the presence of the

ommunicating device. 

.3.3. Weak binding #3 

The system adopts a counter-based token. Because of the vio-

ation of rule #2, BLE attackers, who jam the BLE connection and

niff the token, can keep the token for later use. The token is valid

ntil the device receives a valid token since the counter is not used

ogether with the timestamp that defines a valid duration. 

.3.4. Strong binding #1 

The device is a smart door lock. In the lock initialization and

ccount binding process, the lock and the app perform ECDH key

xchange via the BLE channel, which generates a shared key be-

ween them. The shared key is stored by the lock and sent to the

loud by the app. The cloud binds the lock id, user id, and the

hared key together. 

A complete unlocking process begins with the app sending a

akeup signal to the lock. The lock sends back a challenge, and

he app acquires the shared key from the cloud and generates the

oken by encrypting the challenge with the shared key. The lock re-

eived the token and decrypted it with the stored shared key. If the

esults match the challenge the lock sent before, the unlock action

s performed. The lock is a door lock that is widely used in short-

erm rental housing. The landlord needs to temporarily authorize a

enant to unlock. The temporary authorization relies on the cloud

o do access control. The cloud checks the tenant account. If it is

uthorized, the cloud will accept the challenge forwarded by the

enant app and generates the token. The tenant app receives

he token and uses it to unlock the device. The tenant app acts

s the forwarding point for the whole time. 

In this case, the secret key plays the role of key d−a . However, its

eneration process involves no device-app authentication, which

iolates rule S#1, hence is vulnerable to the MITM attack. A BLE

ttacker can launch the MITM attack when the lock is initialized

nd completely controls the device. 

.3.5. Strong binding #2 

In the lock initialization and account binding process, the lock

ends a channelpwd to the app via the BLE channel. The chan-

elpwd is a secret value that is hard-coded in the lock. The cloud

eceives the lock id, user id, and channelpwd from the app and

tores the binding relationship. The challenge-response mode is

sed in this locking system. The lock generates a random string

nd sends it to the app. The app uses channelpwd , which is ac-

uired from the cloud, to encrypt the random string. The encryp-

ion result is used as a token. In the temporary authorization sit-

ation, the cloud sends the channelpwd directly to the authorized

emporary user. The temporary user conducts the unlocking pro-

ess as the owner does. 

The secret key channelpwd is hard-coded in the lock and trans-

itted to the app via the BLE channel without any protection,

hich violates rule S#2, resulting in the attacker capable of un-

ocking the lock at any time. It also violates rule S#3, causing the

rrevocable authorization. 

. Related work 

Cloud-in-the-middle IoT security. Zhou et al. (2019) studied the

nteractions between clouds, devices, and applications, and dis-

overed several new vulnerabilities by inspecting state transi-

ions. OConnor et al. (2019) revealed that the always-responsive

nd on-demand messages sent between the device and the cloud
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are independent and distinguishable, which endangers the in-

tegrity and availability of the information the device provides.

Chen et al. (2019b) conducted a security analysis of remote bind-

ing using a state-machine model. Chen et al. (2019a) revealed

that attackers in the vicinity could compromise the local binding.

Li et al. (2018) showed the flawed WiFi provisioning scheme leaks

WiFi credentials to local wireless attackers. 

Trigger-action platform IoT security. Tian et al. (2017) guarantees

that the capabilities and called APIs requested by an app actu-

ally align with the app description. Fernandes et al. (2016a) re-

veals vulnerabilities due to over-privileged smart home applica-

tions. Fernandes et al. (2016b) introduces a solution that forces

apps to make their data use patterns explicit and then enforce

the declared information flows while preventing all other flows.

Rahmati et al. (2018) proposes a risk-based permission model

in smart homes. Ding and Hu (2018) reveals that smart home

devices may interact with each other through shared physical

environments. Celik et al. (2018b) leverages static analysis of

smart applications to detect possible physical channel interac-

tions between multiple home automation applications (IoT apps).

Celik et al. (2019) detects when an individual app and interactions

among apps lead to unsafe and insecure states. Valente and Carde-

nas (2017) provides contextual integrity to the permission granting

process of IoT apps. Celik et al. (2018a) proposes a static taint anal-

ysis tool called SAINT for tracing sensitive data flows in IoT appli-

cations. 

App-in-the-middle IoT security. Ho et al. (2016) analyzed smart

locks that are the DGC (Device-Gateway-Cloud) architecture and

indicate the state consistency attack due to this architecture, which

enables irrevocable control of the lock. Xu et al. (2019) stud-

ies the problem that malicious devices use specific profiles to

break the security of Android and threaten the privacy of users

due to failure to authenticate the profiles provided by the de-

vice. Naveed et al. (2014b) discusses the Android platform’s flaws

in the design and control of the external resource’s permissions,

which causes unauthorized apps to access the external device,

and proposes a corresponding solution, DaBinder. Sivakumaran and

Blasco (2019) reveals that other applications on the phone can

unauthorized access (read and write) the data of the paired pro-

tected BLE device. Demetriou et al. (2017) proposes a new tech-

nique that achieves fine-grained, situation-aware access control of

IoT devices over a home area network. Cristalli et al. (2019) studies

the problem of mutual authentication between two apps running

on two different devices and communicating over a short-distance

channel. 

7. Conclusion 

We proposed a new IoT architecture named app-in-the-middle

IoT and adopted a methodology that builds an abstract model and

extracts a concept called token to analyze its security. Applica-

tion scenarios significantly influence the role of the app, hence

affecting how the properties of the token are implemented. We

respectively inspected the generation and distribution of the to-

ken in different usage scenarios, and proposed the prerequisites

that must be met to be secure, based on which several security

rules is given. Violations of these rules may cause consequences

such as unauthorized access, information leakage, irrevocable au-

thorization, and device hijack, as shown by the cases we have

analyzed. 
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