
Detecting Encryption Functions via Process

Emulation and IL-Based Program Analysis�

Ruoxu Zhao, Dawu Gu, Juanru Li, and Hui Liu

Dept. of Computer Science and Engineering
Shanghai Jiao Tong University

Shanghai, China
dwgu@sjtu.edu.cn

Abstract. Malware often encrypts its malicious code and sensitive data
to avoid static pattern detection, thus detecting encryption functions and
extracting the encryption keys in a malware can be very useful in secu-
rity analysis. However, it’s a complicated process to automatically detect
encryption functions among huge amount of binary code, and the main
challenge is to keep high efficiency and accuracy at the same time. In
this paper we propose an enhanced detection approach. First we de-
signed a novel process level emulation technique to efficiently analyze
binary code, which is less resource-consuming compared with full sys-
tem emulation. Further, we conduct program partitioning and assembly-
to-IL(intermediate language) translation on binary code to simplify the
analysis. We applied our approach to sample programs using crypto-
graphic libraries and custom implemented version of typical encryption
algorithms, and showed that these routines can be detected efficiently.
It is convenient for analysts to use our approach to deal with the en-
crypted data within malware automatically. Our approach also provides
an extensible interface for analysts to add extra templates to detect other
forms of functions besides encryption routines.

Keywords: Encryption detection, Process emulation, Intermediate lan-
guage, Binary code analysis.

1 Introduction

Recent years have witnessed a dramatic rise in the growth of work on automati-
cally detecting certain algorithms in programs especially in malware. In order to
solve the problem of algorithm detection, a number of approaches were proposed,
and most of them are mainly heuristic[10][9][6]. However, despite an increasing
interest in algorithm identification in binary programs, in particular in detecting
cryptographic primitives, there still lacks systematic and convenient approaches
that facilitate researchers to perform efficient detection.

� Supported by the National Science and Technology Major Projects 2012ZX03002011-
002.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 252–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Detecting Encryption Functions via Process Emulation 253

We present a generic encryption function detecting approach using Process
Emulation and IL(intermediate language)-based Program Analysis, which is tar-
geted at achieving fast, convenient and extensible detection. The basic principles
behind our technique are stripping unnecessary runtime information, simplifying
analysis process and providing interface for new extensions. First, we designed
and implemented our own process emulator to reduce the overhead brought by
emulating full system environment. Then we adopted a custom defined IL to
simplify analyzed program. Based on this IL, not only we designers but also
other analysts could easily write a template to match certain algorithms. And
finally, we combined IL-based template matching and dynamic data verification
to improve the accuracy and efficiency of encryption routines identification.

Some of the contributions of this work are listed below.

– Lightweight process emulation. We designed process emulation, a novel em-
ulation technique, to run a program within its host operating system, and
only emulate the necessary components of a system for the program to be
analyzed. This technique provides a lightweight emulation environment with
fast speed while keeping fine-grained analyzing capability.

– IL-based program transformation. To address the issues of dynamic program
pattern matching and analysis, we further extended detection method by
introducing intermediate language as analyzing medium, increasing its effi-
ciency and accuracy, and acquiring platform compatibility at the same time.

– Flexible template matching. We provided an open interface for analysts to
write template of different algorithms in IL form. Our emulator dynamically
loads templates during the detection phase and uses template to construct
heuristics.

– Template based data filtering and verification. Traditional matching
approaches may verify all runtime data, and meanwhile test huge amount
of unrelated data. Our IL based analyzer first matches code fragments with
templates and filters out those data of mismatching code fragments. Then,
a data verifier is designed to check matched data and deploy refined input-
output verification. The process not only improves verification efficiency sig-
nificantly, but also reduces false positive rate to negligible level.

The rest of the paper is structured as following. Section 2 gives an overview of
algorithm detection problem and related work. Section 3 describes our approach
in detail. Section 4 gives concrete instance of template based encryption function
detection and evaluation results. Some countermeasures to our approach are
discussed in section 5 and an overview about future work is given. And section 6
concludes this paper.

2 Problem Statement

Encryption function detection is a problem of searching certain algorithms in
programs especially in binary code. This work is based on the following as-
sumptions: (1) The knowledge of the algorithm is obtained before detection; (2)



254 R. Zhao et al.

The implementation of the algorithm is not aimed at failing the detection de-
liberately. These assumptions are reasonable in the real world for the following
reasons. First, it is always prudent to adopt mature encryption algorithms for
the consideration of security, and these mature encryption algorithms are gener-
ally public and are tested for a long term. So we suppose that the precondition of
detecting an encryption algorithm is knowing its details. Second, In most cases,
the purpose of the encryption algorithms in malware is to protect malicious code
and to hide sensitive data. Thus these encryption algorithms are often imple-
mented without being obfuscated or packed in order to provide accuracy and
efficiency.

Previous detection methods generally take advantage of certain properties of
an algorithm as the signature. Caballero et al.[3] took advantage of the fact that
encryption routines use a high percentage of bitwise arithmetic instructions. The
approach of Groebert el al.[4] was based on both generic characteristics of cryp-
tographic code and signatures for specific instances of cryptographic algorithms.
Zhang et al.[12] proposed an algorithm plagiarism detection approach using crit-
ical runtime values. And Zhao et al.[13] used input-output correlation of certain
ciphers to detect cryptographic data.

There are several reasons why proposing new detection techniques is necessary
to current security analysis.

– Existing approaches usually use tools such as QEMU[2] and PIN[8] to trace
data and instructions. And these tools don’t have satisfactory performance.
Actually, Groebert el al.[4] reported that for a malware analysis process the
tracing took 14 hours and the analysis phase 8 hours.

– Existing approaches are not extensible. That is to say, analysts can’t easily
adjust these specific approaches to either adapt different implementations of
algorithms or to detect new ones.

– Taking traced instructions alone as input is not enough to acquire effective
heuristics. For dynamic data based detection, the main problem is how to
filter out useless data according to heuristics.

In contrast to previous work in this area, the goal of our work is to design
extensive, convenient and efficient detection approach. We argue that a new
approach for efficient tracing is necessary. And because the data feature related to
algorithm is very important for heuristics, it is suggested to combine instructions
and data together to acquire powerful heuristics. What’s more, a simple form
of program is able to improve analyzing efficiency and help an analyst deploy
her own detection. We improved the detection approach in two aspects: one is
to perform a high speed program tracing using process emulation, and the other
one is to translate program into IL to simplify construction of heuristics and
third-party matching extension design. In addition, our approach verifies the
matching result with input-output data correlation to reduce the chance of false
positive, and to extract the input and output parameter(e.g., the secret key) at
the same time.



Detecting Encryption Functions via Process Emulation 255

3 Our Approach

Our approach adopts a hybrid methodology combining code characteristic match-
ing and data input-output verification. To make dynamic analysis possible, the
program we’re trying to analyze is first executed in an emulation environment,
and low-level runtime data is acquired in this step. Then, traced instructions
are partitioned to fragments, and translated to our IL representations. For each
block of program, fuzzy matching techniques which are inaccurate but fast are
used with existing algorithm templates implemented in IL. And finally, dy-
namic data verification is conducted to identify the correct algorithm and extract
parameters.

3.1 Process Emulation

A full-system emulator, such as Bochs[7], often emulates a set of fully func-
tional hardware, and runs an operating system on the emulated hardware. It
usually runs as a user-space process in the host operating system. A program to
be analyzed runs in the emulated operating system, where non-privileged and
privileged instructions are all executed in a software emulated environment.

Fig. 1. Comparison of Full System Emulation and Process Emulation

Because of the nature of instruction emulation, full-system emulators often
have a poor performance. Through actual tests, we found that Bochs emulator
runs 102 slower than non-emulated environment. To emulate a single instruction,
we often need tens even hundreds of actual instructions, which considerably
impacts the runtime performance of a full-system emulator.

In program analysis using full-system emulation, we see that the guest
(emulated) operating system and the host operating system are usually the same,



256 R. Zhao et al.

and the OS specific operations, such as process context switch, are trivial to our
analysis. Therefore, we came up a program emulation proposal that directly em-
ulates the target program on host operating system, which we called process
emulation.

Being different from full-system emulation, process emulation directly uses
the host operating system to provide OS-specific features, such as handling sys-
tem API calls. This assumption requires the guest OS and the host OS to be the
same. The process emulator is a user-space application that can emulate other
user-space applications, where CPU instruction execution, memory management
and some OS features are emulated by the process emulator, and system call-
s/APIs are executed by the host operating system. The comparison of full system
emulation and process emulation is shown in figure 1.

One advantage of process emulation is that all system API calls are hooked
by the emulator. Hence, sandboxing can be easily achieved and malware can be
run directly on the emulator, preventing the malware from interfering with the
real OS.

3.2 Program Partitioning

The first step of analysis after program tracing is program partitioning, where
sequential instructions traced from process emulation are partitioned into basic
blocks or program segments. The goal of this stage is to make partitioned seg-
ments the same scale as an algorithm implementation. In static analysis, it is
possible to reconstruct the whole control flow graph or function call hierarchy,
but in dynamic analysis however, it’s usually impossible to obtain the complete
image of a program, because we cannot get through all execution paths in one
time of execution. Whenever a conditional branch is met, only the determined
path is executed, so we cannot build a complete control flow graph through lim-
ited execution traces. Hence, partitioning the program into appropriate scale at
appropriate point is crucial to the follow-up steps. We develop some partition-
ing algorithms with different granularity, including basic blocks, inter-procedure,
procedure call, etc.

3.3 Intermediate Language

Dynamic program tracing usually produces low-level, fine-grained program data,
including processor register values, memory access values, etc. The fact that our
IL is designed to be close to machine language makes translation from tracing
result to IL can be done with the lowest cost. The instruction set of our IL is
highly reduced as well, which helps to increase template matching performance,
and grasp primary runtime information at the same time. In this way, we build
up an IL that is light-weighted, platform-compatible and easy to analyze, and is
used in each step of analysis, including dynamic translation, template algorithm
implementation, programmatching and dynamic data verification. The structure
of an IL template is shown in figure 2.



Detecting Encryption Functions via Process Emulation 257

Fig. 2. IL Program Template

3.4 Assembly-to-IL Translation

In the translation step, binary instructions are translated into IL instructions.
This is usually done after program partitioning, because the translation may lose
information about original program context. The translation is not accurate,
which means that some irrelevant information is discarded. For example, the
zero flag in x86 architecture indicates if an arithmetic operation produces a zero
value[5], and most of the time, we don’t care if the value is zero, so the value of
zero flag is discarded in the translation.

Selection of Instructions. Not all traced instructions are translated into IL
instructions. Normally, translations are limited to these categories: arith-
metic, logical, bitwise, data transferring, control-flow transferring, etc.

Memory Access. Data used in program execution is usually contained in mem-
ory. For almost every algorithm implementation, its input and output pa-
rameters are first stored in memory, then displayed on the screen or stored in
a file. By identifying memory reading and writing, we can generate dynamic
inputs and outputs of a program, and perform data verification in later stage.
We treat the memory as a global array object, and memory reading and writ-
ing are translated into array getting and setting at the index specified by
the address of memory access.

Data Preservation. The advantage of dynamic program analysis is that we
have direct access to runtime data which is unavailable in static analysis.
Each instruction in IL program segment has an optional field that stores its
original context, including memory access values, instruction pointer, etc.



258 R. Zhao et al.

3.5 Template Matching

In template matching step, IL segments are matched to template IL programs
using fuzzy matching techniques, and the matched segments are further verified
in data verification step.

A template program is an implementation of a certain algorithm written in IL
code, which can be executed in IL interpreter and has explicit input and output
format. A dynamic translated IL program segment, on the other hand, contains
an incomplete translation of traced instructions, and usually cannot be executed
in the interpreter. Also, it contains runtime data of the original program, which is
different from IL templates. Template matching is done in IL-instruction level or
IL control-flow level(control flow information is contained in dynamic translated
program), and is controlled by a posteriori threshold, which defines the matching
accuracy.

In template matching step, efficiency is usually more important than accuracy.
Previous research of data pattern matching showed that analyzing large amount
of irrelevant data is the bottleneck of dynamic data analysis. Hence, the main
purpose of template matching is that we can filter out most of the impossible
traced result with little cost. To keep a low false-negative rate, we should only
filter out the “obviously impossible” segments. Fortunately in most cases, most
of the dynamic translated segments satisfy such a condition. We designed some
fine-tuned template matching algorithms, including direct mapping, instruction
frequency, CFG matching and scale predicting.

3.6 Dynamic Data Verification

In this step, all input and output data is first extracted from the program seg-
ment. We assume that all the data needed for analysis is stored in memory, and
we define the input data as the memory values first referenced by memory read-
ing, and the output data as the memory values last set by memory writing. This
data is then further processed into memory chunks, according to its memory
offset(address).

Next, we try to construct possible algorithm parameters from the memory
chunks. We use some heuristic techniques to eliminate low-priority data, such as
pointer values, all-zero (initializing) values, etc. Each possible set of parameters
is in turn injected into the IL interpreter.

Then, after injection of parameters, the IL interpreter executes the template
program to produce output results. Each output result is then verified in the
program segment’s output data, and if a matching is found, we confirm that
the implementation of a certain algorithm exists in a program segment. The
workflow of data verification is shown in figure 3.

We can see that we don’t have to know the exact implementation of the
algorithm we’re trying to analyze. We just have to provide one template imple-
mentation, and the data verification will test if they are the same.

False positives are highly unlikely to happen when the input and output pa-
rameters reach a certain length, say 128-bit. We may take the AES encryption



Detecting Encryption Functions via Process Emulation 259

Fig. 3. Dynamic Data Verification

as an example. Each 128-bit input block is encrypted into an 128-bit output
block, and whenever the correct 128-bit data shows up in a program segment’s
runtime data, we may safely say that it contains an AES encryption, because
the implementation is similar to the template, which is verified in the template
matching step, and the corresponding data is correct, verified in this step.

The data verification step tells us if an algorithm implementation truly exists
in the original program, and extracts its corresponding parameter, completing
the analysis.

4 Experiment and Evaluation

We choose several custom programs as well as common cryptography libraries
such as OpenSSL[11] to implement cryptographic algorithms, and use them as
testing programs for proof-of-concept evaluation of accuracy, effectiveness and
performance. The cryptographic algorithms we use include AES(128-bit and
256-bit), RC4, MD5, SHA1 and SHA2, and the implementations of the same
algorithm are different and independent. The AES implementations are from the
original Rijndael implementation, OpenSSL library and Nettle[1] crypto library,
the RC4 implementation is custom, and the hash functions are from OpenSSL
library. A primary result of all testing programs is shown in table 1.

Partitioning Strategy. In experiments, we use the inter-procedure partition-
ing as the main program partitioning method. The basic-block partitioning
can hardly satisfy the structure of template algorithms, since template al-
gorithms often have many basic blocks and a complicated control-flow. The



260 R. Zhao et al.

Table 1. The Test Results

Binary Algorithm Algorithm Detected Description

aes std.exe AES 128-bit aes subkey be Original AES implementation

aes nettle.exe AES 128-bit aes subkey le Nettle crypto library

aes ssl.exe AES 128-bit aes key OpenSSL library

aes256 ssl.exe AES 256-bit aes key 256 OpenSSL library

rc4 custom.exe RC4 rc4 key Custom implementation

md5 ssl.exe MD5 md5 core OpenSSL library

sha1 ssl.exe SHA1 sha1 core OpenSSL library

sha2 ssl.exe SHA2 sha2 core OpenSSL library

procedure partitioning tracks a whole function call in one partition, which
has a huge memory consumption, and is difficult to achieve an acceptable
performance because of the vast amount of data. The inter-procedure parti-
tioning satisfies all our needs, as it can get the appropriate partition scale,
and the fact that it has no memory need makes the analysis can be done
simultaneously with tracing.

Matching Algorithms. We find that complicated matching algorithms are not
necessary in our analysis, and we primarily combine the instruction frequency
and scale predicting as the matching algorithm. Direct mapping algorithm
has complexity of O(n2),which is too slow for fast but inaccurate matching.
Instruction frequency has complexity of O(n), and in actual experiments it
can distinguish matching program segments from other segments quite well.
CFG matching algorithm is unavailable in most circumstances, since the
CFG of a segment is not always available in one dynamic execution. And
finally, the scale predicting turns out to be very effective. It has the complex-
ity of O(1) and can efficiently identify those segments which are too large
or too small for a template program. The matching similarity is combined
from all matching algorithms, and mapped to [0, 1]. We use a threshold of
0.95 in all experiments, and then the non-matching segments usually have
similarity of less than 0.90. We list each of the matching similarity in table 2.

Table 2. Matching Results

Binary Algorithm Algorithm Detected Similarity

aes std.exe AES 128-bit aes subkey be 0.9650

aes nettle.exe AES 128-bit aes subkey le 0.9713

aes ssl.exe AES 128-bit aes key 0.9610

aes256 ssl.exe AES 256-bit aes key 256 0.9574

rc4 custom.exe RC4 rc4 key 0.9585

md5 ssl.exe MD5 md5 core 0.9527

sha1 ssl.exe SHA1 sha1 core 0.9577

sha2 ssl.exe SHA2 sha2 core 0.9652



Detecting Encryption Functions via Process Emulation 261

Performance. The performance evaluation includes both program emulation
(tracing) and analysis. As tracing and analysis are done at the same time,
we run each testing program twice, one with analysis and one without anal-
ysis. The performance result is shown in table 3. The tracing time is usually
trivial in each program execution comparing to the analysis. We see that
program tracing takes less than 1 second, which is much faster than whole
system emulation(booting Bochs alone will take about 5 minutes, and trac-
ing is also slower). During analysis, the dynamic data verification step is the
most time-consuming one, because there’s a lot of data to be verified by IL
template, which is run by the IL interpreter. Improper program partition-
ing and template arguments can severely slow down this step, as a large
segment can produce much irrelevant data, and a small length of template
input argument will heavily increase the number of times in searching, thus
burdening the data verification. We also tested the effectiveness of template
matching, and found that analysis took 10 to 50 times longer without tem-
plate matching. Besides, these is no acceleration in the IL interpreter, which
also downgrade the analysis. Despite all this, the average analysis(including
tracing) speed is 167 kIPS(instructions per second), which is more than 10
times faster than the previous result of 15 kIPS(excluding tracing). Such
performance result is quite acceptable considering there’s no optimizations
in this proof-of-concept evaluation.

Table 3. Performance Evaluation

Binary Time(trace) Time(analysis) Time(total) Insts kIPS

aes std.exe 0.013(s) 3.712 3.725 103,757 27.854

aes nettle.exe 0.068 21.395 21.463 808,828 37.684

aes ssl.exe 0.025 0.822 0.847 230,241 271.831

aes256 ssl.exe 0.025 0.847 0.872 234,680 269.128

rc4 custom.exe 0.051 1.775 1.826 459,642 251.720

md5 ssl.exe 0.016 0.422 0.438 147,256 336.200

sha1 ssl.exe 0.065 0.512 0.577 36,018 62.422

sha2 ssl.exe 0.011 0.745 0.756 57,507 76.067

5 Discussion

5.1 Countermeasures

Our method may produce false negatives when used against protected code or
custom implementations of an algorithm. In these conditions, the original struc-
ture of an algorithm is sabotaged, and then failing our analysis. We discuss these
conditions in details, and possible counterattacks against these conditions.

Anti-emulation. Malware may use anti-emulation techniques to protect from
being analyzed. These techniques are usually small hacks or tricks which



262 R. Zhao et al.

utilize bugs or incompleteness of the emulator. By fixing bugs and improving
the completeness of emulation, we can overcome most of the anti-emulation
techniques.

Code Obfuscation. Many malware authors use code obfuscation techniques to
protect their program from being detected. Obfuscation usually transforms
the instruction flow and control flow of a program, which compromise the
ability of matching template algorithms in our analysis. Hence, our analysis
method cannot be used against strong code obfuscation(such as VM ob-
fuscation). However, with a few changes, we may make our analysis method
invulnerable to code obfuscation. We see that data integrity can be preserved
even in obfuscation, we just have to modify the partitioning and matching
algorithms. The first and simplest modification is to lower the threshold of
template matching. Many simple obfuscators use instruction transforms to
confuse analysts, but the fundamental meaning of a program remains un-
changed. As our matching is not 100% accurate, we just have to enlarge the
tolerance of the similarities between a program segment and an algorithm
template. To deal with strong obfuscation which usually uses virtual machine
protection, we may try carefully select the representing set of instructions to
be translated into IL code. For example, a virtual machine obfuscator may
translate a single DIV instruction into its own VM representation. During
interpretation of the VM representation, such DIV instruction will eventu-
ally be executed by the same or a similar instruction. We may select a set of
instructions that are rarely used by internal logic part of a VM obfuscator,
and in this way we can still use instruction frequency as a valid matching
algorithm.

Custom Implementations. A malware author may use a non-standard ver-
sion of standard algorithm. For example, one may change the constants in a
cryptographic algorithm, producing a similar but different algorithm. Such
modifications will bypass the data verification part of our analysis, as the
detected algorithm produced a different result. This issue may be addressed
by considering the constants in a algorithm as input arguments, and keep-
ing only the computations in the algorithm templates. Some developers may
break an algorithm into small parts, and such an implementation cannot
be detected using a whole algorithm. We may also try split a template al-
gorithm into small blocks, but doing so will certainly increase the running
time of analysis.

6 Conclusion

In this paper, we presented a novel program analysis technique using process
emulation and IL-based analysis which is fast and extensible. We tested the
effectiveness and accuracy using custom programs implemented with common
cryptographic libraries. The result showed that we could identify encryption or
hashing functions within these programs, and extract the corresponding input
and output data of these functions. The performance evaluation shows that



Detecting Encryption Functions via Process Emulation 263

program tracing and analysis could be done within acceptable time, usually less
than one minute for small-scale programs, which is superior to most existing
analysis techniques.

We further studied possible countermeasures against our technique, and future
improvements of our technique. We showed that these countermeasures could be
solved by strengthening our system and refining algorithms. We plan to develop
new program matching algorithms which may concern data characteristics, and
further improve the performance of our technique.

References

1. Nettle: a low-level crypto library (last visited, 2012),
http://www.lysator.liu.se/~nisse/nettle/

2. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)

3. Caballero, J.: Binary code extraction and interface identification for security ap-
plications. Technical report, DTIC Document (2009)

4. Gröbert, F., Willems, C., Holz, T.: Automated Identification of Cryptographic
Primitives in Binary Programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.)
RAID 2011. LNCS, vol. 6961, pp. 41–60. Springer, Heidelberg (2011)

5. Intel. Intel 64 and ia-32 architectures software developers manual. intel,
http://www.intel.com/products/processor/manuals 64

6. Jhi, Y.C., Wang, X., Jia, X., Zhu, S., Liu, P., Wu, D.: Value-based program char-
acterization and its application to software plagiarism detection. In: Proceeding
of the 33rd International Conference on Software Engineering, pp. 756–765. ACM
(2011)

7. Lawton, K.P.: Bochs: A portable pc emulator for unix/x. Linux Journal 29es, 7
(1996)

8. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: ACM SIGPLAN Notices, vol. 40, pp. 190–200. ACM
(2005)

9. Oksanen, K.: Detecting algorithms using dynamic analysis. In: Proceedings of the
Ninth International Workshop on Dynamic Analysis, pp. 1–6. ACM (2011)

10. Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., Su, Z.: Detecting code clones
in binary executables. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 117–128. ACM (2009)

11. OpenSSL: The Open Source toolkit for SSL/TLS (last visited, 2012),
http://www.openssl.org/

12. Zhang, F., Jhi, Y.C., Wu, D., Liu, P., Zhu, S.: A first step towards algorithm
plagiarism detection (2011)

13. Zhao, R., Gu, D., Li, J., Yu, R.: Detection and analysis of cryptographic data inside
software. Information Security, 182–196 (2011)

http://www.lysator.liu.se/~nisse/nettle/
http://www.intel.com/products/processor/manuals
http://www.openssl.org/

	Detecting Encryption Functions via Process Emulation and IL-Based Program Analysis
	Introduction
	Problem Statement
	Our Approach
	Process Emulation
	Program Partitioning
	Intermediate Language
	Assembly-to-IL Translation
	Template Matching
	Dynamic Data Verification

	Experiment and Evaluation
	Discussion
	Countermeasures

	Conclusion
	References




