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Abstract—Binary code clone analysis is an important tech-
nique which has a wide range of applications in software
engineering (e.g., plagiarism detection, bug detection). The main
challenge of the topic lies in the semantics-equivalent code
transformation (e.g., optimization, obfuscation) which would
alter representations of binary code tremendously. Another chal-
lenge is the trade-off between detection accuracy and coverage.
Unfortunately, existing techniques still rely on semantics-less
code features which are susceptible to the code transformation.
Besides, they adopt merely either a static or a dynamic approach
to detect binary code clones, which cannot achieve high accuracy
and coverage simultaneously.

In this paper, we propose a semantics-based hybrid approach
to detect binary clone functions. We execute a template binary
function with its test cases, and emulate the execution of
every target function for clone comparison with the runtime
information migrated from that template function. The semantic
signatures are extracted during the execution of the template
function and emulation of the target function. Lastly, a simi-
larity score is calculated from their signatures to measure their
likeness. We implement the approach in a prototype system des-
ignated as BINMATCH which analyzes IA-32 binary code on the
Linux platform. We evaluate BINMATCH with eight real-world
projects compiled with different compilation configurations and
commonly-used obfuscation methods, totally performing over 100
million pairs of function comparison. The experimental results
show that BINMATCH is robust to the semantics-equivalent code
transformation. Besides, it not only covers all target functions
for clone analysis, but also improves the detection accuracy
comparing to the state-of-the-art solutions.

I. INTRODUCTION

Binary code clone analysis is a fundamental technique in
software engineering. It has important applications in fields of
software maintenance and security, for example, plagiarism de-
tection [20], [45], patch code analysis [5], code searching [6],
program comprehension [18], malware lineage inference [32],
[30], [1], known vulnerability detection [34], [12], [13], etc.

The main challenge that affects the accuracy of binary code
clone analysis stems from the semantics-equivalent code trans-
formation (C1), typically including link-time optimization
of compilers and code obfuscation [11]. The transformation
modifies the representations of binary code. Even though
two pieces of code are compiled from the same code base,
the resulting binaries after the transformation would differ
significantly on the syntax or structure level (e.g., instruc-
tions, control flow graphs). Another challenge is the trade-
off between detection accuracy and coverage (C2), which

corresponds to analyzing binary code in which manner, dy-
namic or static [39]. Dynamic methods procure rich semantics
from code execution to ensure high accuracy, but they analyze
only the executed code, leading to low coverage. In contrast,
static methods are able to cover all program components,
while they rely more on syntax and structure features which
lack semantics. Additionally, static methods cannot decide the
targets of indirect jumps and calls. Thus, the analysis accuracy
of static methods is relatively low.

In the literature, binary code clone analysis has drawn
much attention. However, existing techniques adopt either
static method which depends on semantics-less features or
dynamic method which merely cares about executed code.
For example, static methods discovRE [12], Genius [13],
and Kam1n0 [10] extract features from control flow graphs,
and measure similarity of binary functions basing on graph
isomorphism. Multi-MH [34] and BinGo [6] capture behaviors
of a binary function by sampling it with random values. Since
the random inputs lack semantics and are usually illegal for
the function, they could hardly trigger the real semantics of a
function. For dynamic methods, Ming et al. [32], Jhi et al. [20],
and Zhang et al. [45] perform analysis merely on executed
code. BLEX [11] pursues high code coverage at the cost of
breaking normal execution of a binary function, distorting the
semantics inferred from its collected features. Therefore, it
is necessary to propose a method which depends only on
semantics and takes advantages of both static and dynamic
techniques to detect binary code clones.

In this paper, we propose BINMATCH, a semantics-based
hybrid approach, to detect binary clone functions. Given a tem-
plate function, BINMATCH firstly instruments and executes it
with test cases to record its runtime information (e.g., function
argument values). It then migrates the information to each
candidate target function and emulates the execution of the
function. During the execution and emulation, semantic signa-
tures of the template and target functions are recorded. Finally,
BINMATCH compares signatures of the template function and
each target function to measure their similarity. To overcome
C1 of semantics-equivalent code transformation, BINMATCH
only relies on semantic signatures extracted from the whole
template or target function. To address C2 of the trade-off
between accuracy and coverage, BINMATCH adopts the hybrid
method which captures semantic signatures in both static
and dynamic manners. By executing the template function,

ar
X

iv
:1

80
8.

06
21

6v
1 

 [
cs

.S
E

] 
 1

9 
A

ug
 2

01
8



BINMATCH captures its signature of rich semantics. Then,
it emulates every candidate target function with the runtime
information of the template function to extract their signatures,
which takes all target functions into consideration.

BINMATCH is evaluated with eight real-world projects
compiled with various compilation configurations and ob-
fuscation settings, totally performing over 100 million pairs
of function comparison. The experimental results indicate
that BINMATCH not only is robust to semantics-equivalent
code transformation, but also outperforms the state-of-the-art
solutions.

In summary, the contributions of this paper are as followed:
• We propose a semantics-based hybrid approach to analyze

binary code clones. The approach captures the semantic
signature of a binary function in either dynamic (exe-
cution) or static (emulation) manner. Thus, it could not
only detect clone functions accurately with signatures of
rich semantics, but also cover all target functions under
analysis.

• To smooth the migration of runtime information and the
emulation of a function, we propose novel strategies to
handle global variable reading, indirect calling/jumping,
and library function invocation.

• We implement the approach in a prototype system
BINMATCH which supports IA-32 binary code clone
analysis on the Linux platform. BINMATCH is evaluated
with eight real-world projects which are compiled with
different compilation configurations and obfuscation set-
tings. The experimental results show that BINMATCH is
robust to the semantics-equivalent code transformation.
Besides, it covers all candidate target functions for clone
analysis, and outperforms the state-of-the-art solutions
from the perspective of accuracy.

II. MOTIVATION AND OVERVIEW

In this section, we firstly present an example to illustrate the
limitations of previous work on binary code clone analysis,
which motivate our research. Then, we explain the basic idea
of our approach and show the system overview.

A. Motivating Example

It is a typical application of binary code clone detection to
locate known vulnerable code in binary programs [34], [12],
[13]. Given a piece of code which contains a known bug, it
is possible to locate the corresponding clone (or similar) code
in other programs to check whether those programs are also
vulnerable.
NConvert [42] is a closed-source image processor which

supports multiple formats. It statically links the open-source
library libpng [29] to handle files of the PNG format.
Function png_set_unknown_chunks of libpng is found to
contain an integer overflow vulnerability before the version
of 1.5.14 (CVE-2013-7353). It is necessary to locate the
statically-linked function in NConvert to verify whether the
function is vulnerable and ensure the program security. Since
the source code of libpng is available, it is reasonable

to fulfill the target with the clone code detection technique.
However, only the executable of NConvert is accessible
that its compilation configuration is unknown. Even though
executables are compiled from the same code base, different
compilation configurations would lead to semantics-equivalent
transformation (C1), generating syntax- and structure-variant
binary code of equal semantics. Hence, methods relying on
syntax or structural features (e.g., control flow graph iso-
morphism) become ineffective. Besides, it is challenging to
not only locate png_set_unknown_chunks accurately, but also
achieve high code coverage of NConvert (C2). The target
function is statically-linked, mixing with the user-defined
functions of NConvert. Static methods of binary code clone
detection could cover all functions in NConvert to find
png_set_unknown_chunks. However, they leverage semantics-
less features, generating inaccurate results. In contrast, dy-
namic methods depend on semantic features which are ex-
tracted via code execution, while they merely focus on the
executed code. It even requires huge extra work for dynamic
methods to generate test cases in order to cover the target
function. Unfortunately, code coverage is still an issue for
dynamic analysis of binaries [24].

B. System Overview of BINMATCH

We propose BINMATCH to perform binary function clone
analysis. Given a binary function (the template), BINMATCH
finds its clone match in the target binary program, returning
a list of functions (the targets) from the program, which is
ranked basing on the semantic similarity.

Figure 1 presents the work flow of BINMATCH. Given
the template function which has been well analyzed or un-
derstood (png_set_unknown_chunks), BINMATCH instruments
and executes it with test cases, capturing its semantic sig-
nature (§III-A). Meanwhile, runtime information is recorded
during the execution as well (§III-B). Then, BINMATCH
migrates the runtime information to each target function of the
target binary program (NConvert). It emulates the execution
of the target function to extract the semantic signature (§III-C).
Afterward, BINMATCH compares the signature of the template
function to that of each target function and computes their
similarity score (§III-D). Lastly, a list of target functions
is generated, which is ranked by the similarity scores in
descending order.

In summary, to overcome C1, BINMATCH completely de-
pends on semantic signatures to detect binary function clones.
Additionally, the signatures are captured in a hybrid manner,
which addresses C2. BINMATCH firstly extracts the signature
of the template function via executing its test cases. We assume
that the template function has been well studied that its test
cases are available. In above example, the vulnerability of
png_set_unknown_chunks has been known, and its test cases
could be found in the libpng project as well as from the
vulnerability database. Then, with the runtime information
of the template function, BINMATCH generates the signature
of each target function of the binary program under analy-
sis (NConvert) via emulation. Therefore, BINMATCH is able
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Fig. 1: System Architecture of BINMATCH

to cover all target functions to detect their clone matches with
signatures of rich semantics.

III. METHODOLOGY

In this section, we firstly introduce the semantic signatures
adopted by BINMATCH, then discuss how it captures the
signatures of binary functions and measures their similarity.

A. Semantic Signatures

For each binary function, BINMATCH captures behaviors
during the execution or emulation as its signature. Given
a specific input, the signature indicates how the function
processes the input and generates the output, reflecting the
semantics of that function. The signature consists of following
features:

• Read and Written Values: The feature consists of
global (or static) variable values read from or written to
the memory during an (emulated) execution. It contains
the input and output values of the function when provided
with a specific input, indicating the semantics of the
function.

• Comparison Operand Values: The feature is composed
of values for comparison operations whose results decide
the following control flow of an (emulated) execution. It
indicates the path of the function followed by an input to
generate the output. Thus, it is semantics related as well.

• Invoked Standard Library Functions: Standard library
functions provide fundamental operations for implement-
ing user-defined functions (e.g., malloc, memcpy). The
feature has been shown to be semantics-related and
effective for code clone analysis [41], [40]. Therefore,
it is adopted as complement to the semantic signature of
BINMATCH.

During the execution or emulation, BINMATCH captures the
sequence of above features, and considers the sequence as the
signature of a binary function for latter similarity comparison.

B. Instrumentation and Execution

In this step, BINMATCH instruments a binary function F
to generate its signature by running test cases. Meanwhile,
runtime information for Emulation (§III-C) is recorded as well.

Algorithm 1 presents the pseudo-code of instrumentation.
BINMATCH traverses each instruction (I) of F. If I accesses
global variables, performs comparison operations, or calls a
standard library function, BINMATCH injects code before I

Algorithm 1: Algorithm of Instrumentation
Input: Instruction under Analysis I
Output: Instruction after Instrumentation Ir

1 Algorithm Instrumentation (I)
2 Ir ← I
3 // capture features for the signature
4 if I accesses global/static data then
5 Ir ← record_data_val (Ir)

6 if I performs comparison then
7 Ir ← record_oprd_val (Ir)

8 if I calls a standard library function then
9 Ir ← record_libc_name (Ir)

10 // record runtime information
11 if I reads an argument of the function then
12 Ir ← record_arg_val (Ir)

13 else if I calls a function indirectly then
14 Ir ← record_func_addr (Ir)

15 else if a function returns then
16 Ir ← record_ret_val (Ir)

17 return Ir

to capture corresponding features and generate the signature
of F (Line 4-9).

Line 11-16 present code for recording runtime values of
F’s execution. According to cdecl, the default calling con-
vention of IA-32 binaries, function arguments are prepared
by callers and passed through the stack. Therefore, if I
reads a variable which is pushed onto the stack before the
invocation of F, BINMATCH considers the variable as a
function argument and records its value (Line 11-12). Besides,
BINMATCH records the addresses of subroutines invoked by
F indirectly (Line 13-14). The return values of all subroutines,
including both user-defined functions and standard library
functions, are recorded as well (Line 15-16).

C. Emulation

For every target function T to be compared with the
template function F, BINMATCH emulates its execution with
the runtime information extracted from the last step. The
semantic signature of T is captured simultaneously. Clone
functions should behave similarly if they are executed with
the same input [11]. Namely, if T is the clone match of F,
their signatures should be similar. Algorithm 2 presents the
pseudo-code of emulation. BINMATCH provides T with the
arguments of F (Line 2), and emulates it with the runtime



Algorithm 2: Algorithm of Emulation
Input: Emulated Memory Space of the Target Function M
Input: Runtime Value Set of the Template Function S

1 Algorithm Emulation (M, S)
2 assign_func_arg (M, S)
3 foreach instruction I to be emulated do
4 if I reads global variables then
5 addr ← get_var_addr (I)
6 if addr is accessed for the first time then
7 migrate_var_val (M, addr, S)

8 if I calls a function indirectly then
9 addr ← get_tar_addr (I)

10 if addr ∈ S then
11 migrate_ret_val (M, addr, S)

12 else exit_emulation()

13 if I invokes a standard library function then
14 libc← get_func_name (I)
15 if libc needs system supports then
16 migrate_ret_val (M, libc, S)

17 // capture features for the signature
18 if I contains features then
19 record_feat_val (M, I)

20 emulate_inst (M, I , S)

information of F (Line 20). Besides, BINMATCH records the
features of T to generate its signature (Line 18-19). Next, we
discuss the algorithm for emulation in more details.

1) Function Argument Assignment: In our scenario, binary
functions for comparison are compiled from the same code
base, i.e., clone functions have the same number of arguments.
According to the calling convention, BINMATCH recognizes
the arguments of the target function T. If the argument number
of T equals to that of F, BINMATCH assigns argument values
of F to those of T in order. Otherwise, BINMATCH skips the
emulation of T which cannot be the match of F. For example,
F and T have the following argument lists:

F(farg_0, farg_1, farg_2)
T(targ_0, targ_1, targ_2)

If BINMATCH has the values of farg_0 and farg_2
that F only accesses the tow arguments in the execution,
BINMATCH assigns their values to targ_0, targ_2 sep-
arately. To make the emulation smoothly, arguments without
corresponding values (targ_1) are assigned with a prede-
fined value (e.g., 0xDEADBEEF).

2) Global Variable Reading: In the execution of the tem-
plate function F, it might read global (or static) variables
whose values have been modified by former executed code.
To emulate the target function T in the memory space of
F, BINMATCH migrates global variable values of F to cor-
responding addresses which T reads from. BINMATCH needs
to consider two points: i) getting the global variable addresses
which T reads from (Line 5 of Algorithm 2), and ii) migrating
the corresponding global variable value from the memory of
F to that of T (Line 7 of Algorithm 2).

1 mov ecx, gvar1
2 test ecx, ecx
3 mov eax, gvar2
4 add ecx, eax

(a) Template Function (F)

1 mov ecx, gvar1’
2 mov ebp, gvar2’
3 test ebp, ebp
4 add ebp, ecx

(b) Target Function (T)

Fig. 2: Global Variable Value Migration

1 mov edx, [ebp-0E4h] ; load a local variable
2 lea eax, [edx-0Ah] ; get the index
3 cmp eax, 2Ah
4 ja loc_8052880 ; the default case
5 jmp dword ptr [eax*4+808F630h]; indirect jump

Fig. 3: Indirect Jump of a Switch

Global variables are stored in specific sections of a binary
program (e.g., .data). The size of each variable is decided
by the source code. The location of the variable, including
the base address of a global data structure (e.g., array), is
determined in the binary code after compilation and not
changed afterward. Thus, global variables are accessed with
hard-coding addresses. Each member of a global data structure
is accessed by adding its corresponding offsets to the constant
base address, and the offset is generated from the input (func-
tion arguments). Hence, BINMATCH is able to obtain global
variable addresses of T easily during the emulation.

BINMATCH migrates global variable values according to
their usage order. Figure 2 shows an example of two functions
for global variable value migration. During the execution of
F, two global variables gvar1 and gvar2 are read at Line 1
and Line 3 separately in Figure 2a. gvar1 is used to test
its value at Line 2, and gvar2 is used for the addition
operation at Line 4. So the usage order of the two vari-
able is [gvar1, gvar2]. When emulating T in Figure 2b,
BINMATCH identifies ecx and ebp are loaded with global
variables gvar1’ and gvar2’ at Line 1 and Line 2. Then,
it finds ebp is used for testing at Line 3, and ecx is used for
the addition at Line 4 afterward. The usage order of the global
variables in Figure 2b is [gvar2’, gvar1’]. Therefore,
BINMATCH assigns the value of gvar1 to gvar2’, and
gvar2 to gvar1’ accordingly. If there are no enough global
values to assign (e.g., T reads two global variables but F reads
only one), BINMATCH provides the surplus variables of T with
predefined values (e.g., 0xDEADBEEF).

3) Indirect Calling/Jumping: Targets of indirect calls are
decided by the input at runtime. Since the target function T is
emulated in the memory space of the template function F, if
T is the clone match of F, the indirect call targets of T should
be those invoked during the execution of F. BINMATCH then
migrates the return values of F to corresponding indirect calls
of T (Line 10-11 in Algorithm 2). Otherwise, the target func-
tion under emulation cannot be the match of F. BINMATCH
stops the process and exits (Line 12 in Algorithm 2).

An indirect jump (or branch) is implemented with a jump
table which contains an ordered list of target addresses. Jump
tables are stored in .rodata, the read-only data section of
an executable. Therefore, similar to the reading of a global



data structure, a jump table entry is accessed by adding the
offset to the base address of the jump table. The base address
is a constant value, and the offset is computed from the input.

Figure 3 shows an indirect jump of a switch structure. At
Line 2, the index value is computed with edx, a value of an
input-related local variable, and stored in eax. If the index
value is not above 0x2A, which represents the default case,
an indirect jump is performed according to the jump table
whose base address is 0x808F630 (Line 5). As entries of a
jump table are sorted, with identical input, clone code would
have equal offset and jumps to the path of the same semantics.
BINMATCH just follows the emulation and has no need to do
extra work for indirect jumps.

4) Standard Library Function Invocation: If the target
function T calls a standard library function which requests
the system support (e.g., malloc), BINMATCH skips its em-
ulation and assigns it with the result of the corresponding one
invoked by the template function F (Line 15-16). For example,
F and T calls following library functions in sequence:

F: malloc_0, memcpy, malloc_1
T: malloc_0’, memset, malloc_1’

BINMATCH assigns return values of malloc_0, malloc_1
to malloc_0’, malloc_1’ separately, and skips the emu-
lation. memset is emulated normally, because it has no need
for the system support.

D. Similarity Comparison

BINMATCH has captured the semantic signature (feature
sequence) of the template function via execution, and those
of target functions via emulation. In this step, it computes
the similarity score of the template function signature and
that of each target function in pairs. We utilize the Longest
Common Subsequence (LCS) algorithm [4] to the similarity
measurement. On one hand, a signature is captured from
the (emulated) execution of a function. The appearance order
of each entry in the signature is a feature as well. On the other
hand, a signature is captured from optimized or obfuscated
binary programs that it contains diverse or noisy entries in
the sequence. LCS not only considers the element order of
two sequences for comparison, but also allows skipping non-
matching elements, which tolerates code optimization and
obfuscation. Hence, the LCS algorithm is suitable for signature
similarity comparison of BINMATCH.

The similarity score is measured by the Jaccard Index [15].
Given two semantic signatures Sf and St, the Jaccard Index
is calculated as followed:

J(Sf , St) =
|Sf ∩ St|
|Sf ∪ St|

=
|Sf ∩ St|

|Sf |+ |St| − |Sf ∩ St|
(1)

Here, |Sf | and |St| are the lengths of sequence Sf and St.
|Sf ∩ St| is the LCS length of the two sequences. J(Sf , St)
ranges from 0 to 1, which is closer to 1 when Sf and St are
considered more similar.

After this step, BINMATCH generates a target function list
which is ranked by the similarity scores in descending order.

IV. IMPLEMENTATION

Currently, BINMATCH supports IA-32 binary function clone
analysis of ELF (Executable and Linkable Format) files. Next,
we discuss the key aspects of the implementation.

A. Binary Function Boundary Identification

BINMATCH requires addresses and lengths of binary func-
tions to perform clone analysis. Given an ELF file, We
leverage IDA Pro v6.6 [7], an industrial strength reverse
engineering tool, to disassemble it, identifying the bound-
aries of each binary function. The plugin of IDA Pro,
IDAPython, provides interfaces to obtain addresses of func-
tions, i.e., Functions(start, end) which returns a list
of function first addresses between start and end. There-
fore, we develop a script with IDAPython to acquire function
addresses of binary files automatically. Although the resulting
disassembly of IDA Pro is not perfect [2], it is sufficient for
BINMATCH.

B. Instrumentation and Emulation

We implement the instrumentation module of BINMATCH
with Valgrind [33], a dynamic instrumentation framework.
Valgrind unifies binary code under analysis into VEX-IR,
a RISC-like intermediate representation (IR), and injects in-
strumentation code into the IR code. Then, it translates the
instrumented IR code into binaries for execution. IR translation
unifies the operations of binary code and facilitates the process
of signature extraction. For example, memory reading and
writing operations are all unified with Load and Store, the
opcodes defined by VEX-IR. Hence, we just concentrate on the
specific operations of IR and ignore the complex instruction
set of IA-32.

The step of emulation is implemented basing on angr [36],
a static binary analysis framework. angr borrows VEX-IR
from Valgrind, translating binary code to be analyzed into
IR statically. Given a user-defined initial state, it provides
a module named SimProcedure to emulate the execution
of IR code. SimProcedure allows injecting extra code to
monitor the emulation of the IR code. It actually emulates
the process of instrumentation. Besides, angr maintains a
database of standard library functions to ease the emulation
of those functions (§III-C4). Thus, we develop a script of
monitoring code, which is similar to the instrumentation code
developed with Valgrind, to capture semantic signatures during
the emulation with angr.

C. Similarity Comparison

As the length of a signature sequence might have the
scale over 104, the possibility is high for the traditional LCS
algorithm, whose memory complexity is O(mn), to run out the
memory. We implement BINMATCH to compute LCS with the
Hirschberg’s Algorithm [17] which needs only O(min(m,n))
memory space.



TABLE I: Object Projects of Evaluation

Program Version Description

convert 6.9.2 Command-line interface to the ImageMagick
image editor/converter

curl 7.39 Command-line tool for transferring data using
various protocols

ffmpeg 2.7.2 Program for transcoding multimedia files

gzip 1.6 Program for file compression and decompres-
sion with the DEFLATE algorithm

lua 5.2.3 Scripting parser for Lua, a lightweight, multi-
paradigm programming language

mutt 1.5.24 Text-based email client for Unix-like systems

openssl 1.0.1p Toolkit implementing the TLS/SSL protocols
and a cryptography library

wget 1.15 Program retrieving content from web servers
via multiple protocols

V. EVALUATION

We conduct empirical experiments to evaluate the effec-
tiveness and capacity of BINMATCH. Firstly, BINMATCH is
evaluated with binaries compiled with different compilation
configurations, including variant optimization options and
compilers. The results are then compared to those of existing
solutions (§V-B). Secondly, we evaluate the effectiveness of
BINMATCH in handling obfuscation by comparing binary
programs with their obfuscated versions (§V-C). Lastly, with
the motivating example of NConvert described in §II-A, we
show how BINMATCH locates the statically-linked defective
function of NConvert (§V-D).

A. Experiment Setup

The evaluation is performed in the system Ubuntu 16.04
which is running on an Intel Core i5-2320 @ 3GHz CPU with
8G DDR3-RAM.

1) Dataset: We adopt programs of eight real-world projects
as objects of the evaluation, as listed in Table I. The object
programs have various functionalities, such as data compres-
sion (gzip), code parsing (lua), email posting (mutt), etc.
With those object programs, the effectiveness of BINMATCH is
shown to be not limited by the type of programs and functions
under analysis.

In the first group of experiments (§V-B), the object pro-
grams are compiled with different compilers, i.e., gcc v4.7
and clang v3.8.0, and variant optimization options, i.e., -O3
and -O0. In the second group of experiments (§V-C), we
adopt Obfuscator-LLVM v4.0.1 (OLLVM) [22] to obfuscate
the object programs for comparison. OLLVM provides three
widely used techniques for obfuscation. We leverage the three
techniques to obfuscate the object programs which are opti-
mized with -O3 and -O0 respectively. Therefore, we compile
10 (= 2 · 2 + 3 · 2) unique binary executables for each object
program, overall 80 (= 10 · 8) for the evaluation.

For each experiment, we select two from the 10 executables
of an object program, i.e., Etem (the template executable)
and Etar (the target executable). BINMATCH executes Etem

with test cases obtained from its project, considering each

executed function as a template function. Then it compares
every template function to all target functions of Etar in
pairs to find the clone match. On average, 291 functions are
triggered in an execution of Etem, and Etar contains 4,353
functions. As a result, BINMATCH totally performs over 100
million pairs of function comparison in all the experiments.

2) Ground Truth: All the 80 executables are stripped that
their debug and symbol information is discarded for the eval-
uation. To verify the correctness of the experimental results,
we compile extra unstripped copies of the 80 executables,
and establish the ground truth with their debug and symbol
information.

For each template function, BINMATCH generates a list of
target functions ranked by the similarity scores in descending
order (as described in §III-D). According to the ground truth,
if the symbol name of the Top 1 function (with the highest
similarity score) in the resulting list is the same as that of
the template function, the match is considered to be correct.
Besides, we manually verify cases of function inline. For ex-
ample, function A invokes B in Etem, while the corresponding
function B’ is inlined into A’ becoming A’B’ in Etar, and B’
disappears. If BINMATCH matches B with A’B’, we consider
it correct as well.

3) Evaluation Metrics: Similar to previous work [11], [18],
we measure the performance of BINMATCH with accuracy,
the percentage of executed template functions whose correct
matches are found. The formula is as followed:

Accuracy =
|Correct Matches|
|Template Functions|

(2)

B. Accuracy across Compilation Configurations

1) Cross-optimization Analysis: In this section, we leverage
BINMATCH to match clone functions of different optimiza-
tions. For a compiler, higher optimization options contain all
strategies specified by lower ones. Taking gcc as an example,
the option -O3 enables all 88 optimizations of -O2, and turns
on another 14 optimization flags in addition. Thus, we only
discuss the case of -O3 (Etem) versus -O0 (Etar), which has
larger differences than any other pair of cross-optimization
analysis.

Figure 4 shows the results of cross-optimization analysis
for each object program compiled by gcc (Figure 4a) and
clang (Figure 4b) separately. In Figure 4a, BINMATCH
achieves the accuracy over 82.0% for each object program, and
the average accuracy is 91.5%. For every executable compiled
by clang in Figure 4b, BINMATCH correctly detects over
80.0% functions of each object as well, and the average
accuracy is 92.0%.

We observe that function inline is a reason leading to the
incorrect matches. For example, template A calls B, while the
corresponding target function B’ is inlined into A’ becoming
A’B’. Because the semantic signature of A’B’ contains those
of both A’ and B’, signature length of A is shorter than that
of A’B’. Hence, the similarity score of function pair (A, A’B’)
might be relative small, and BINMATCH reports an incorrect
match.
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2) Cross-compiler Analysis: In this section, BINMATCH
is evaluated with binaries compiled by different compilers.
Similar to the cross-optimization analysis, only the case of
-O3 versus -O0 is considered. The results are presented
in Figure 5. For comparisons between gcc -O3 (Etem)
and clang -O0 (Etar), BINMATCH gives the accuracy
all over 84.0%, and the average accuracy is 90.3%, as
shown in Figure 5a. Additionally, in Figure 5b, BINMATCH
achieves an average accuracy of 91.4% for the setting of
clang -O3 (Etem) versus gcc -O0 (Etar). The accuracy
of each object program exceeds 85.0%.

In addition to function inline introduced by different op-
timizations, we find floating-point number is another reason
resulting in incorrect matches. gcc leverages x87 floating-
point instructions to implement corresponding operations,
while clang uses the SSE (Streaming SIMD Extensions)
instruction set. x87 adopts the FPU (floating point unit)
stack to assist in processing floating-point numbers. The
operations deciding whether the stack is full or empty add
redundant entries to the semantic signature of comparison

TABLE II: Accuracy compared with the state-of-the-art
solution Kam1n0 and the industrial standard tool BinDiff

Setting BINMATCH Kam1n0 BinDiff

gcc -O3 vs. gcc -O0 0.915 0.294 0.331
clang -O3 vs. clang -O0 0.920 0.252 0.506

gcc -O3 vs. clang -O0 0.903 0.216 0.385
clang -O3 vs. gcc -O0 0.914 0.273 0.501

Average Accuracy 0.916 0.265 0.409

operand values (§III-A). In contrast, SSE directly operates on
a specific register set (e.g., XMM registers) and has no extra
operations. Besides, x87 could handle single precision, double
precision, and even 80-bit double-extended precision floating-
point calculation, while SSE mainly processes single-precision
data. Due to the different precision of representations, even
though the floating-point numbers are the same, their values
generated by the two compilers are not equal, which therefore
results in the incorrect matches.



3) Comparison with Existing Work: In this section,
we compare BINMATCH to the state-of-the-art solution
Kam1n0 [10] and the industrial standard tool BinDiff v4.2.0
supported by Google [14], [47] from the perspective of detec-
tion accuracy. Because Kam1n0 and BinDiff are both made
available to the public, we could use the two solutions to detect
binary clone functions with the same settings as BINMATCH.
BINMATCH is evaluated by the detection accuracy of executed
template functions. To perform fair comparison, we measure
the accuracy of Kam1n0 and BinDiff by detecting clones of
those template functions as well. The results are presented
in Table II. Obviously, BINMATCH outperforms Kam1n0 and
BinDiff in detecting binary clone functions across compilation
configurations.

Kam1n0 and BinDiff are typical solutions which rely on
syntax and structure features to detecting binary clone func-
tions. Kam1n0 captures features of a function from its control
flow graph (CFG), and encode the features as a vector for
indexing. Thus, essentially, it detects clone functions by ana-
lyzing graph isomorphism of CFG. The relatively low accuracy
of Kam1n0 indicates that compilation configurations indeed
affect representations of binaries, even though two pieces of
code are compiled from the same code base. In addition
to measuring the similarity of CFG, BinDiff considers other
features to detect clone functions, such as function hashing
which compares the hash of raw function bytes, call graph
edges which match functions basing on the dependencies in
the call graphs, etc. By carefully choosing suitable features to
measure the similarity of functions, BinDiff becomes resilient
towards variant compilers as well as optimization options to
an extent. Therefore, it performs better than Kam1n0, but is
still at an apparent disadvantage compared to BINMATCH.

4) Processing Time: BINMATCH analyzes binary function
clones in three steps: instrumentation & execution, emulation,
and similarity comparison (as shown in Figure 1). According
to Algorithm 1, BINMATCH injects code only to record
runtime information and semantic signatures, and does not do
online analysis. Thus, the overhead of instrumentation is low.

As described in Emulation (§III-C), BINMATCH merely
emulates the user code of a target function, and borrows
runtime values directly from the template function, skipping
the emulation of specific system operations, such as allocating
memory, reading or writing a file, etc. As a result, it would not
take much time to emulate a function. In above experiments,
BINMATCH spends 4.3 CPU seconds emulating a function on
average. Since BINMATCH adopts LCS to compute similarity
scores whose time complexity is relative high, the step of
similarity comparison occupies the most processing time. In
the experiments, it costs 573.9 CPU seconds on average to
complete a pair of function comparison.

C. Accuracy of Matching Obfuscated Code

In this section, we conduct experiments to compare normal
binary programs with their corresponding obfuscated code. We
compile the object programs with the setting of gcc -O3 as
the normal code (Etem). We use all the three obfuscation meth-

TABLE III: Accuracy of analyzing obfuscated code. The
template binaries are compiled with gcc -O3. OLLVM

adopts clang as its compiler.

Target Obfuscation BINMATCH BinDiff
ollvm -O3 Instructions Substitution 0.891 0.676
ollvm -O0 0.887 0.302
ollvm -O3 Bogus Control Flow 0.843 0.295
ollvm -O0 0.796 0.281
ollvm -O3 Control Flow Flattening 0.874 0.464
ollvm -O0 0.791 0.323
Average

Accuracy / 0.847 0.411

ods provided by OLLVM to obfuscate the object programs gen-
erated with clang -O3 and clang -O0 separately (Etar,
OLLVM adopts clang as its compiler).

The experimental results are shown in Table III. Results
of BinDiff are also presented as references. Instruction sub-
stitution replaces standard operators (e.g., addition operators)
with sequences of functionality-equivalent, but more complex
instructions. It obfuscates code on the syntax level, affecting
the detection accuracy of BinDiff, but posing few threats to
BINMATCH which is semantics-based.

Bogus control flow (BCF) adds opaque predicates to a
basic block, which breaks the original basic block into two.
Control flow flattening (FLA) generally breaks a function
up into basic blocks, then encapsulates the blocks with a
selective structure (e.g., the switch structure) [27]. It creates
a state variable for the selective structure to decide which
block to execute next at runtime via conditional comparisons.
BCF and FLA both changes the structure of the original
function, i.e., modifying the control flow. They insert extra
code which is irrelevant to the functionality of the original
function, generating redundant semantic features which are
indistinguishable from normal ones (e.g., comparison operand
values of opaque predicates). Thus, they affect the detection
accuracy of BINMATCH. When analyzing binaries optimized
with -O0, it correctly detects 79.6% of functions obfuscated
by BCF, and 79.1% by FLA, while the average accuracy of
gcc -O3 vs. clang -O0 is 90.3%. However, BINMATCH
still achieves twice the average accuracy of BinDiff, i.e., 84.7%
of BINMATCH and 41.1% of BinDiff.

D. Case Study: libpng vs. NConvert

As described in §II-A, before the version of 1.5.14,
libpng contains an integer overflow vulnerability in func-
tion png_set_unknown_chunks. NConvert, a closed-source
image processor, statically links the library to handle files
of the PNG format. In this section, we download the
source code of libpng v1.5.12 and the executable of
NConvert v6.17 from their home pages, aiming to locate
png_set_unknown_chunks in NConvert with BINMATCH.

We compile libpng v1.5.12 with the default configura-
tions, i.e., gcc -O2. Then the clone analysis is performed in
following steps:

1) We run a test case of libpng from its project to
cover the template function png_set_unknown_chunks,



and recored its semantic signature as well as runtime
information with BINMATCH. As a result, the signature
of the template function contains 133 entries (features).

2) png_set_unknown_chunks has 4 arguments. Thus,
BINMATCH only emulates 337 target functions of
NConvert whose identified argument number is 4 as
well. Overall, the process of emulation takes 5987.0
CPU seconds.

3) BINMATCH totally spends 57.0 CPU hours to compare
the signature of the template function and those of 337
target functions. It reports func_81ad770 (the function at
0x81AD770 in NConvert) achieves the highest simi-
larity score 0.378 (= 99

133+228−99 , the signature length is
228 and LCS length is 99).

By manual verification, we find the result is correct that
func_81ad770 is the clone match of png_set_unknown_chunks.
After locating the target function, analysts could do further
analysis on it, e.g., checking whether the function is vulnera-
ble, which is out of the scope of this paper.

E. Threats to Validity

BINMATCH is implemented with Valgrind and angr
which both adopt VEX-IR as the intermediate representa-
tion (§IV-B). However, VEX-IR is not perfect that 16% x86
instructions could not be lifted, although only a small subset
of instructions is used in executables in practice and VEX-IR
could handle most cases [26]. The incompleteness of VEX-IR
might affect the accuracy of semantics signature extraction,
while BINMATCH still produces promising results in above
experiments.

VI. DISCUSSION AND FUTURE WORK

A. Scope of Application

In the evaluation, BINMATCH is shown to be effective in
analyzing obfuscated binary clone code which is generated
by OLLVM (§V-C). The robust of BINMATCH is due to the
nature of dynamic analysis and the adoption of semantic
signatures. However, that does not mean BINMATCH could
handle all kinds of obfuscations. Besides, the OLLVM code
actually affects the accuracy of BINMATCH in the experi-
ments. When analyzing benign code, BINMATCH achieves
higher average accuracy which is 91.6%, while the ratio of
obfuscated code is 84.7%. In the literature, deobfuscation has
been well studied [38], [43], [44]. Therefore, if BINMATCH
fails to detect an obfuscated function, it is a better choice to
deobfuscate it firstly, then perform further analysis.

In this paper, we present BINMATCH to analysis binary
programs of ELF (Executable and Linkable Format) on
the IA-32 architecture. Because the method is semantics-
based, BINMATCH could be ported to other platforms, for
example, PE (Portable Executable) files on Windows. Be-
sides, BINMATCH is implemented basing on Valgrind and
angr which both support cross architecture analysis. Hence,
BINMATCH is applicable for multiple architectures, such as
x86-64, ARM, MIPS, etc. We leave it as future work.

B. Inline Function Detection

As discussed in the section of Evaluation Metrics (§V-B1),
function inline poses a threat to the accuracy of BINMATCH.
Empirically, a compiler inlines a function because the function
is short and invoked for numerous times. Namely, size and
invocation times might be features of an inline function. Thus,
it is possible to detect the inline functions with machine
learning techniques. If a function is considered as the potential
inline function, we could combine it to its callers and capture
the signature. That is left as future work.

C. Scalability

The step of similarity comparison (§III-D) is the perfor-
mance bottleneck of BINMATCH. It calculates the similarity
score of two signatures with the LCS algorithm whose time
complexity is high. However, the comparisons of function
pairs are unrelated to each other. The step could be im-
plemented in parallel to reduce the total processing time.
Besides, MinHash [37] is a possible solution for the similarity
comparison. It calculates the Jaccard Index directly without
computing the LCS of the two signatures. However, MinHash
treats the signature sequence as a set, discarding the order
information of elements in the sequence, which is a potential
semantic feature (as discussed in §III-D). Therefore, MinHash
is a trade-off between accuracy and efficiency.

VII. RELATED WORK

Code clone (or similarity) analysis is a classic topic of
software engineering. Due to the code reuse of software
development, automatically identifying clone code becomes
a common requirement of software maintenance (e.g., bug
detection). The technique is also applied in other fields,
e.g., malware analysis of security. In the last twenty years,
researchers have made much effort into source code clone
analysis, typically including CCFinder [23], DECKARD [21],
CloneDR [3], CP-Miner [28], etc. As the focus of this paper
is clone analysis on binary code, which has its own challenges
and scenarios, we would not talk about work on source code
in more details. Next, we mainly discuss the related work on
binary code clone analysis.

Syntax and structural features are widely adopted to detect
binary clone code. Sæbjørnsen et al. [35] detect binary clone
code basing on opcode and operand types of instructions.
Hemel et al. [16] treat binary code as text strings and measure
similarity by data compression. The higher the compression
rate is, the more similar the two pieces of binary code are.
Khoo et al. [25] leverage n-gram to compare the control flow
graph (CFG) of binary code. David et al. [9] measure the
similarity of binaries with the edit distances of their CFGs.
BinDiff [14] and Kam1n0 [10] extract features from the CFG
and call graphs to search binary clone functions.

As discussed earlier in this paper, the main challenge of
binary code clone analysis is semantics-equivalent code trans-
formation, such as link-time optimization, obfuscation, etc.
Because of the transformation, representations of binary code
are altered tremendously, even though the code is compiled



from the same code base. Therefore, syntax- and structure-
based methods become ineffective, and semantics-based meth-
ods prevail. Jhi et al. [20] and Zhang et al. [45] leverage
runtime invariants of binaries to detect software and algorithm
plagiarism. Ming et al. [32] infer the lineage of malware by
code clone analysis with the system call traces as the semantic
signature. However, those solutions require the execution
of binary programs and cannot cover all target functions.
Egele et al. [11] propose blanket execution to match binary
functions with full code coverage which is achieved at the cost
of detection accuracy. Luo et al. [31] and Zhang et al. [46] de-
tect software plagiarism by symbolic execution. Although their
work is resilient to code transformation, symbolic execution is
trapped in the performance of SMT/SAT solvers which cannot
handle all cases, e.g., indirect calls. David et al. [8] decompose
the CFG of a binary function into small blocks, and measure
the similarity of the small blocks basing on a statistical model.
However, the boundaries of CFG blocks would be changed by
code transformation, affecting the accuracy of the method.

More recently, with the prevalence of IoT devices, binary
code clone analysis is proposed to perform across archi-
tectures. Multi-MH [34], discovRE [12], Genius [13] are
proposed to detect known vulnerabilities and bugs in multi-
architecture binaries via code clone analysis. BinGo [6] and
CACompare [19] are proposed to analyze the similarity of bi-
nary code across architectures as well. However, discovRE and
Genius still depend heavily on the CFG of a binary function.
Multi-MH, BinGo and CACompare sample a binary function
with random values to capture corresponding I/O values as the
signature, while the random values are meaningless that they
merely trigger limited behaviors of the function. Therefore,
it is difficult for them to cover the core semantics of binary
code.

To sum up, the topic of binary code clone analysis mainly
focuses on two points: i) what signature to adopt, such as
opcodes and operand types (syntax), CFG (structure) and
system calls (semantics); ii) how to capture the signatures,
such as statically disassembling, dynamically running and
sampling, etc. BINMATCH leverage the combination of read
and written values, comparison operand values, and invoked
library functions as the signature which is able to better reveal
the semantics of binary code. Besides, it captures the signature
via both execution and emulation, which not only ensures the
richness of semantics, but also covers all target functions to
be analyzed.

VIII. CONCLUSION

In this paper, we propose BINMATCH, a hybrid approach,
to detect binary clone functions. BINMATCH executes the
template function with its test cases, and migrates the runtime
information to target functions in order to emulate their
executions. During the execution and emulation, BINMATCH
captures semantic signatures of the functions for clone analy-
sis. The experimental results show that BINMATCH is robust to
semantics-equivalent code transformation, including different
compilation configurations and commonly-used obfuscations.

Besides, we show that BINMATCH performs better than the
state-of-the-art solutions to binary code clone analysis, such
as BinDiff and Kam1n0.
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