
NativeSpeaker: Identifying Crypto Misuses
in Android Native Code Libraries

Qing Wang, Juanru Li, Yuanyuan Zhang(B), Hui Wang, Yikun Hu,
Bodong Li, and Dawu Gu

Shanghai Jiao Tong University, Shanghai, China
yyjess@sjtu.edu.cn

Abstract. The use of native code (ARM binary code) libraries in
Android apps greatly promotes the execution performance of frequently
used algorithms. Nonetheless, it increases the complexity of app assess-
ment since the binary code analysis is often sophisticated and time-
consuming. As a result, many defects still exist in native code libraries and
potentially threat the security of users. To assess the native code libraries,
current researches mainly focus on the API invoking correctness and less
dive into the details of code. Hence, flaws may hide in internal implemen-
tation when the analysis of API does not discover them effectively.

The assessment of native code requires a more detailed code com-
prehension process to pinpoint flaws. In response, we design and imple-
ment NativeSpeaker, an Android native code analysis system to assess
native code libraries. NativeSpeaker provides not only the capability of
recognizing certain pattern related to security flaws, but also the func-
tionality of discovering and comparing native code libraries among a
large-scale collection of apps from non-official Android markets. With
the help of NativeSpeaker, we analyzed 20,353 dynamic libraries (.so)
collected from 20,000 apps in non-official Android markets. Particularly,
our assessment focuses on searching crypto misuse related insecure code
pattern in those libraries. The analyzing results show even for those most
frequently used (top 1%) native code libraries, one third of them contain
at least one misuse. Furthermore, our observation indicates the misuse
of crypto is often related to insecure data communication: about 25%
most frequently used native code libraries suffer from this flaw. Our con-
ducted analysis revealed the necessity of in-depth security assessment
against popular native code libraries, and proved the effectiveness of the
designed NativeSpeaker system.

1 Introduction

Android apps are typically written in Java. However, the limitations of Java such
as memory management and performance drives many Android apps to contain

This work was partially supported by the Key Program of National Natural Science
Foundation of China (Grants No. U1636217), the Major Project of the National
Key Research Project (Grants No. 2016YFB0801200), and the Technology Project
of Shanghai Science and Technology Commission under Grants No. 15511103002.

c© Springer International Publishing AG, part of Springer Nature 2018
X. Chen et al. (Eds.): Inscrypt 2017, LNCS 10726, pp. 301–320, 2018.
https://doi.org/10.1007/978-3-319-75160-3_19

302 Q. Wang et al.

components implemented in native code. Android provides Native Development
Kit (NDK) to support native development in C/C++, and the app supports
a hybrid execution mode that allows a seamless switch between Java code and
native code. In a hybrid execution, native code is largely compiled as the form
of shared library (.so file) and its exported functions are invoked by Java code
via a Java Native Interface (JNI). Since native code achieves better performance
and flexible data manipulation, it is especially suitable for implementing data
encoding/decoding (e.g., crypto transformation) and raw socket communication.

Although more efficient, native code can be more harmful compared to Java
code. Despite the common memory corruption vulnerabilities, high level security
flaws are also contained in native code especially some third-party libraries. Even
though security assessment of native code libraries is essential, flaws are more
difficult to be discovered. The audit of Android native code is sophisticated for
two main reasons: First, the binary code is hard to be understood since the com-
pilation process removes a large amount of symbol information from the source
code. Without such symbol information the binary code contains little semantics
and the comprehension of low-level disassembling code is also time-consuming.
Second, on Android platform the lack of fine-grained dynamic analysis tools
(e.g., code instrumentation) restricts analysts from collecting runtime data to
supplement the code comprehension. Therefore, an improper designed logic in a
native code library often requires an in-depth analysis to be excavated.

Among all security flaws, crypto misuses in Android apps ia a major security
issue of Android app security [6,20]. Although the security community has pro-
posed utilities to detect crypto misuse in Android apps, the designed technique
is mainly effective when analyzing Java code of Android apps. Our observation in
recent app development reveals that apps tend to use native code version of crypto
implementations in shared libraries rather than that of Java code version to fulfil
the crypto operations. The main consideration is that crypto in native code is effi-
cient and is not easily analyzed by reverse engineers. To assess crypto misuse in
native code of apps, existing native code analysis techniques [8,12,14,19,22] are
generally not domain-specific and thus are less effective.

To further improve the status quo and address the crypto misuse analysis
issue against native code of Android app, in this paper we propose a native code
analysis to help identifying typical crypto misuse patterns in Android native
code libraries practically. Our approach firstly utilizes several heuristics to iden-
tify third-party libraries and then locate crypto functions in their native code.
By summarizing typical implementation features of crypto in native code, our
approach is able to locate two common patterns of crypto functions in native
code. After the locating of crypto functions, we further detect relevant crypto
misuse through checking obsolete algorithms and incorrect parameters. In par-
ticular, we design and implement NativeSpeaker, an automated native code
analysis tool for crypto misuse identification. NativeSpeaker is able to analyze
common Android third-party libraries and find certain crypto misuses such as
predicable key generation and incorrect parameters for crypto APIs. Our evalua-
tion is based on a corpus of 20,000 Android apps, which contain 20,353 instances

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 303

of native shared library files (.so). Our analysis demonstrated that the occurrence
of crypto and crypto-like functions are very popular in those files, and 21 poten-
tial crypto misuses were reported by our analysis. Furthermore, a fine-grained
pattern-matching assessment on 310 frequently used native code shared libraries
was conducted to find insecure communication issue. The results showed that
NativeSpeaker is effective to find complicated crypto misuse cases among a
huge amount of dynamic libraries, and revealed that communication with broken
encryption routine is common in many shared libraries.

The main contributions of this paper are the followings:

– We achieve a large-scale security assessment of apps in those non-official
Android markets. We collected 20,000 popular Android apps and extracted all
20,353 native code libraries used. Then we deduplicate them using semantic
similarity comparison to reduce the number of targets to be analyzed. This
native code library dataset reflects the common features of how functions are
used in native code of Android apps.

– We propose a practical and lightweight analysis approach to find crypto mis-
uses in native code. The approach combines static taint analysis and natural
language processing of function names to locate crypto functions. Then, the
crypto misuses are then found by searching typical patterns summarized from
empirical studies.

– We made use of NativeSpeaker to search a sophisticated insecure behavior–
raw socket data communication without encryption. We find several flaws in
real-world implementations of native code which lead to the broken of com-
munication protection. Compared with previous studies, our system provides
not only capability of large-scale assessment on native code libraries in a rea-
sonable time, but also find internal implementation vulnerabilities caused by
cryptographic misuse.

2 Excavating Semantic Information of Native
Code Library

The usage rate of native code libraries in Android app is rapidly increasing [7].
And it also brings many challenges to Android native code analysis especially
large-scale analysis. An important aspect often ignored by existing analyses is
how to utilize intrinsic characteristics and semantic information (e.g., function-
ality of the library, feature of exported interfaces) of native code libraries. In
this section, We firstly list typical encountered challenges of native code library
analysis. Then, we illustrate common features in native code libraries that can
be leveraged to help retrieve more semantic information through an empirical
study of libraries in current Android apps.

2.1 Challenges of Native Code Analysis

To conduct effective and scalable security analysis against widely used Android
native code libraries, several restrictions should be taken into account. Typically,

304 Q. Wang et al.

Android app contains native code in the form of shared library (.so file). Java
code and native code communicates with each other through Android provided
JNI interface: functions in native code can be invoked from Java layer through
JNI interfaces and vice versa. To develop native code libraries, the Android
Native Development Kit (NDK), a companion tool to the Android SDK, is used
to help developers build performance-critical portions of apps in native code. It
provides headers and libraries that allow developers to build activities, handle
user input, use hardware sensors, and access application resources by program-
ming in C or C++. As a result, almost all Android native code libraries are
written in C or C++ and are compiled using the NDK. To analyze them, binary
code reverse engineering techniques such as disassembling and decompilation are
necessary. However, since the inherent complexity of binary code analysis [17],
understanding those libraries in native code form is not easy.

Moreover, native code libraries are often provided to achieve low latency or
run computationally intensive applications, such as games or physics simulations,
and to reuse existing C/C++ libraries. Thus most Android native code libraries
are implemented by third-party developers to fulfil some universal algorithms
(e.g., crypto algorithm). App developers often directly integrate an Android
native code library and invoke its functions through exported interfaces without
knowing the implementation details. Due to the lack of source code, security
assessment of those libraries are often ignored. Although this is convenient for
app developers, potential security flaws in Android native code libraries may be
introduced to a wide variety of apps.

Although static code analysis is often harnessed to help assess the security
of Android app on a grand scale, finding security flaws, especially sophisticated
logic vulnerabilities related to high-level functionality (e.g., data protection),
is generally restricted to Java code with rich semantics. Existing flaw detection
approaches (e.g., crypto misuse detection) strongly rely on static patterns of code
to find vulnerability. Native code, due to the lack of symbol information, does
not contain enough static pattern and thus a simple pattern matching approach
is inadequate to effectively locate its contained flaws.

Dynamic analysis can collect more runtime information of an app and com-
plements static analysis. Ideally, fine-grained dynamic analysis combined with
static analysis is expected to generate precise analysis results and find security
flaws. However, due to the considerable analysis time, dynamic analysis sys-
tem such as the one proposed by Afonso et al. [7] to obtain a comprehensive
characterization of native code usage in real world applications are often not
applicable to large-scale security analysis. Such issue also exists among other
heavyweight program analysis techniques (e.g., symbolic execution). Since not
only the amount of native code libraries but also the code size of each library
have increased to a considerable scale, a more lightweight analysis should be
introduced.

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 305

Table 1. Word indicators and their related functionalities

Word Indicator Occurrence Functionality

xml 11200 file parsing

png 10572 picture processing

pthread 6828 thread controlling

curl 6220 network

ssl 5260 crypto

http 3860 network

crypto 3553 crypto

evp 3546 crypto

x509 4182 crypto

mutex 2859 thread control

2.2 Extracing Semantics in Native Code Library

To obtain an in-depth understanding of how native code libraries are used, the
first step we conduct is an analysis based on the interface name of a library. As
a shared library, Android native libraries usually export numbers of functions
as interfaces, and the name of those interfaces are generally not obfuscated.
Thus, we utilize those interfaces in exported table as an important source of
information to classify libraries. We utilize a simple natural language process-
ing approach to analyze those interface names: an N-gram algorithm [3,18] is
used to extract the English word sequences in interface names. After splitting an
interface name into different units as a sequence, we can deduce relevant func-
tionalities of the interface according to specific word indicator. For instance, if an
interface name contains the word “x509”, it is possibly related to cryptographic
certificate operating and can be considered as possessing the functionality of
“crypto”.

We collected 20,000 apps and extracted 20,353 native code libraries (details
are illustrated in Sect. 4.1). A part of the analyzing results with related deduction
rules are listed in Table 1. In further, we choose 180 frequently used samples
to conduct a manual investigation. The following observations of native code
libraries are summarized through this manual investigation:

Code reuse: Developers transplant existing open source C/C++ projects
to Android platform. In our investigation, the portion of native libraries
including code migrated form open source project reaches 41.1% (74 of 180).
Most commonly used open source projects are bspatch, base64encoder, stage-
fright honeycomb, and tnet. The reuse of existing open source code allows ana-
lysts to utilize code similarity comparison techniques [16] to obtain more seman-
tic informations.

Native API invoking: The invoking of certain API indicates the specific
behavior of the program. Unlike Java code, native code can conveniently invoke

306 Q. Wang et al.

many low-level system API such as fork. This helps analyze the behaviors of
thread/memory management, process controlling, and network communication.
In our investigation, we found there are 25.5% (46 of 180) of the analyzed libraries
invoke at least one API related to the mention behaviors. Through monitoring
such API invoking, we can better understand the library.

Crypto functions: An important trend of app protection is that developers
tend to implement security related function in native code instead of in Java
code. Java code is easily decompiled and most of the function logic can be
recovered even if the method-renaming obfuscation has been broadly used by
many Android apps. In contrast with Java code, native code is more difficult
to be comprehended. Thus many developers tend to hide the critical function
in native code. However, to protect secret, standard crypto functions are often
adopted. The domain knowledge of cryptography can be leveraged as a sup-
plementary semantic information. If the crypto functions can be identified, the
relevant semantics can hugely assist the understanding of the behavior of the app.

There are two ways for an interface to fulfil cryptographic function: one is
to take advantage of the Java Cryptography Architecture (JCA) which provides
cryptographic services and specifies the developers how to invoke Cryptographic
APIs on Android platform. The other is to implement a cryptographic function
in native code directly. For those two cases, our investigation indicates more
than 28.8% (52 of 180) of native library included at least one crypto encryption
function.

3 NativeSpeaker

In this section we describe the design and architecture the proposed NativeS-
peaker native code security analysis system. The workflow of NativeSpeaker
system is depicted in Fig. 1. It first extracts all native code shared libraries from
apps, then dedpulicates native libraries from same code base via semantic sim-
ilarity comparison techniques. After the deduplication, a dataset of native code
libraries is built. Then, NativeSpeaker conducts both Java cryptography archi-
tecture (JCA) interface analysis and bitwise operation analysis to locate crypto
functions in those libraries. If crypto functions are found in a native code shared
library, they are further checked with a crypto algorithm analysis–checking the
use of obsolete crypto algorithms and incorrect crypto parameters. With the
entire analysis workflow, NativeSpeaker could help analyst pinpoint typical
crypto misuses such as insecure encryption mode and non-random crypto key in
native code.

In the following, we detailed the process of how NativeSpeaker analyzes
native code and search crypto misuses.

3.1 Preprocessing of Native Library

Obtaining ARM Binary Code. Notice that different Android devices use dif-
ferent CPUs, which in turn support different instruction sets. To adapt multiple

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 307

Fig. 1. Workflow of NativeSpeaker

architectures of mobile devices, Android NDK supports a variety of Application
Binary Interfaces (ABIs) such as armeabi, armeabi-v7a, arm64-v8a, x86, x86 64,
mips, mips64, etc. As a result, a released APK usually contains multiple native
code shared libraries with same functions. To simplify the analysis work, in
our analysis only the most frequently used ARM version is analyzed if multiple
libraries with same functions are extracted.

We mainly searched for ARM binary files in app’s /lib and /lib/armabi(XXX)
directories, which are the default directories for developers to store their native
shared libraries. In addition, we found in those directories not all files are with the
same file extension (.so). As a result, we further checked the file header to find those
files started with ELF magic number (7f454c46010101). Thus even if some apps
change a regular shared library’s file extension to others such as .xml and .dex to
hide it, our analysis would not miss it.

Native Library Deduplication. Among the 20,353 extracted native code
files, many of them are the same (or adjacent versions) libraries integrated by
different APKs. If duplicated libraries can be excluded, the amount of analysis
could be reduced significantly.

However, it is not trivial to find duplicated libraries. We argue that using
simple rules such as judging with file hashing is inadequate to deduplicate similar
libraries. In general, two classes of similarity are considered:

(i) Libraries compiled by different developers: If two apps are developed
by different developers, the integrated native code libraries are possibly com-
piled using different compilation kits but are from the same code base. In
this case, libraries are slightly different and file hashing is not able to handle
this similarity.

(ii) Libraries of different versions: Same libraries with adjacent code ver-
sions (e.g., ver 0.9 and 1.0) in our analysis are considered as similar ones.
The product iteration often update its integrated native libraries, but the
contents of the updated libraries are often similar to the old ones.

308 Q. Wang et al.

To cluster similar native code libraries efficient, we utilized an interface-based
analysis to judge whether two libraries are similar. Given a native code library,
four attributes can be considered to judge its provenance: a file hash, b file
names, c author signature, and d interface names. The first three attributes of
one particular native code library change frequently, but the names of exported
interfaces are often consistent. Hence we make use of them to cluster similar
libraries. First, we generate for each library files an interface set, which con-
tains all function names extracted from its export table. Then, two sets from
different libraries are compared if both sets contain at least 20 function names.
We consider two files as the same library of different versions if a high overlap
percentages (90+%) of their interface sets is found, and only choose the latest
one as our analysis target.

In addition, even if two libraries are similar according to our analysis, we still
tend to analyze them respectively if each library is integrated by more than 10
different apps. In this case, we believe that these frequently used libraries affect
enough apps and should be meticulously checked.

3.2 Crypto Function Recognition

The problem of crypto function identification in binary programs of desktop
platform has been studied previously for different motivations. But implemen-
tation of the cryptographic function in mobile platform is different from other
platforms. In Android apps, crypto function can be implemented through two
styles: Java style and Native style. To implement in the Java style, native code
invokes crypto APIs in Java layer through JNI; to implement in the Native style,
the crypto algorithms are directly developed using C/C++ and then compiled
into native functions. In the following, we present the identification of crypto
function implemented in each style, respectively.

Java Style Crypto Identification. JNI allows native code to interact with the
Java code to perform actions such as calling Java methods and modifying Java
fields. Developers can complete cryptographic functions by leveraging the Java
Cryptography Architecture (JCA) which provides cryptographic services and
specifies the developers how to invoke Cryptographic APIs on Android platform.
The JCA uses a provider-based architecture and contains a set of APIs for
various purposes, such as encryption, key generation and management, certificate
validation, etc. We first use a concrete example to illustrate how native code
invoke JCA API in Java layer. As Listing 1.1 shows, the entire sample involves
the phase of initializing crypto key (Line 1–5), choosing crypto algorithm (Line
6–13), initializing IV, and executing encryption routine.

Regulated by the invoke convention of JNI, before executing each method,
the following procedures are essentially employed: First, the code utilizes the
FindClass method to search the class containing methods to be invoked. The,
the GetMethodID is used to find the ID of specific method. Finally, a CallOb-
jectMethod is invoked to conduct the concrete encryption (i.e., DES encryption).

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 309

0

1 ...
2 KeyClass = env ->FindClass("javax/crypto/spec/SecretKeySpec");
3 KeyInitMethodId = env ->GetMethodID(KeyClass ,
4 "<init >",
5 "([BLjava/lang/String;)V");
6 KeyObj = env ->NewObject(KeyClass , KeyInitMethod , key);
7 CipherClass = env ->FindClass("javax/crypto/Cipher");
8 CipherInstance = env ->CallStaticByteMethod(CipherClass ,
9 "getInstance",

10 "(Ljava/lang/String;) Ljavax/crypto/Cipher;",
11 env ->NewStringUTF("DES"));
12 DesInstance = env ->CallStaticObjectMethod(CipherClass ,
13 CipherInstance ,
14 env ->NewStringUTF("DES/CBC/PKCS5Padding"));
15 ...
16 /*IV initialization here*/
17 ...
18 DofinalMethod = env ->GetMethodID(CipherClass ,
19 "doFinal",
20 "([B)[B");
21 result = env ->CallObjectMethod(DesInstance ,
22 DofinalMethod ,
23 msg);

Listing 1.1. Java crypto example

The identification of Java style crypto function in native code mainly relies
on the string information of the JNI parameters. We can capture the JNI param-
eters involved and locate relevant JNI invoking. A total number of 230 frequently
invoked JNI methods (see Appendix A) are monitored to collect such param-
eters. After obtaining the information, we further build a (method, parameter)
tuple. For all tested functions in native code, we collect tuples from them and
analyze them. If we find a (FindClass, javax/crypto/Cipher) tuple, the host func-
tion is expected to invoke crypto APIs in Java layer. Moreover, we can further
analyze collected tuples to help recover the information of used crypto algo-
rithms and operation modes. For instance, if a (NewStringUTF, AES/CBC/P-
KCS5Padding) tuple is found close to the (FindClass, javax/crypto/Cipher)
tuple, it implies that java.crypto.cipher executes an AES-CBC encryption/
decryption operation.

Although there are many crypto schemes such as javax.crypto.Cipher, Bouncy
Castle, and Spongy Castle that support crypto operations in Java layer. Our
analysis only observed the situation of native code utilizing javax.crypto.Cipher.
Therefore, we only focus on the situation of using javax.crypto.Cipher. If any
other crypto providers are involved, similar patterns can also be included.

Native Style Crypto Identification. Compared to Java style crypto code,
native style crypto functions possess less features. They are generally imple-
mented in C or C++ and are compiled to assemble code. The identification of
such crypto functions is actually a procedure of understanding certain semantics
in ARM binary code. In this case, there is no general standard of cryptographic
cipher coding template. Recent researches have proposed multiple techniques on

310 Q. Wang et al.

identifying crypto primitives. To meet our requirement, a technique to identify
both symmetric cryptography and public key cryptography with an acceptable
overhead is expected. We compared these approaches and choose the approach
proposed by Caballero et al. [10], which utilizes a heuristic detection to locate
potential crypto functions. The intuition of this approach is that the substan-
tive characteristics of cryptographic and encoding methods, a high proportion
of bitwise operations is necessary, and for ordinary methods, bitwise operation
would hardly be used. This standard then leads to a efficient static analysis that
could identify both symmetric and asymmetric crypto algorithms.

In detail, we re-implement Caballero approach through the following five
steps: First, we statically disassemble the native code library to label every func-
tion. Second, each function is divided into several basic blocks and for each basic
block, the number of contained instructions and that of bitwise instructions are
counted. Third, the ratio of bitwise instructions to all instructions in one basic
block is calculated. If the ratio exceeds a particular threshold (e.g., 55%), this
basic block is considered as a potential crypto related block. Fourth, if a function
contains more than one crypto related block, this function is labeled as a poten-
tial crypto/encoding function. Finally, we conduct a function-name heuristic
filtering to determine whether a potential crypto/encoding function is actually a
crypto function. Since most crypto functions are exported by the native libraries
to provide particular functionalities, we believe a function without exporting
information (i.e., interface name) is unnecessary to be analyzed. We directly
remove those potential crypto/encoding functions without an exported function
name. Then, we make use of words segmentation technique to handle function
name as the following sample shows:

VP8Lencodestream => VP 8L encode stream

An N-gram algorithm [3,17] is employed to all function names collected. If
the words set of one function contains names of mainstream crypto ciphers such
as AES, DES, DESede, blowfish, RC4, RSA, etc., this function is labeled as
a crypto function. To improve the efficiency, we optimize the adopted N-gram
algorithm through carefully choosing the data set used. The words segmentation
data set we used is a subset of Linguistic Data Consortium data set. Our data
set contains 333,000 unigram words, and 250,000 bigram phrases.

Notice that using simple string matching or regular expression matching
could accelerate the analysis, this however causes false positive. Take the function
of VP8Lencodestream as an example, it contains a “des” substring but is actually
not a crypto function.

3.3 Cryptographic Misuse Detection

cryptographic misuse can be very diverse and complex. In this paper, we only
focus on crypto misuse of symmetric encryption algorithms. We refer to flaw
model from the study of Shuai et al. [20] and mainly concern about two kinds of
misuses: the misuse of crypto algorithm and the misuse of crypto param-
eters. The misuse of crypto algorithm include the case of using obsolete crypto

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 311

algorithms such as DES and MD5. This kind of misuse often leads to brute-force
attacks. The misuse of crypto parameters include the case of using non-random
key material and the case of using improper mode. Using non-random key or
IV directly leads to a weak or broken cryptosystem, while the improperly used
mode such as ECB significantly weakens the security of adopted cryptosystem.

To detect crypto misuse in native code, we employ a series of analyzing
strategies as follows:

Non-random Key Material. Using a non-random cryptographic key mate-
rial to deduce crypto key, or directly using hard-coded cryptographic keys for
encryption, is a severe and critical mistake of crypto engineering practice. How-
ever, this situation is still popular due to the reasons of ignorant developers
or misunderstanding of cryptography. Also, using a non-random Initialization
Vector (IV) with Cipher Block Chaining (CBC) Mode causes algorithms to be
vulnerable to dictionary attacks. If an attacker knows the IV before he specifies
the next plaintext, he can check his guess about plaintext of some blocks that
was encrypted with the same key before. In order to find such misuse of key
or IV in native cryptographic functions, we proposed a simple data dependency
analysis approach. In List 3.3, the example demonstrates how developer uses a
fixed string as key of the DES Encrypt string function. Through checking the
function name (DES Encrypt string, an exported function in native library), the
use of certain crypto algorithms has been located. Then, we follow a simple rule
that all parameters of a symmetric crypto function should be dynamically gen-
erated. We conduct a simple intra-procedural data flow analysis only focus on
the caller of the crypto function. If a parameter of crypto function is generated
without involving of the caller function’s parameters (i.e., random information
from outside) or system APIs, a potential warning of key misuse is reported.
Then we can conduct a manual verification to assure the misuse.
1 msg = JNIEnv:: GetStringUTFChars(*env , msg_input , 0);
2 msg_len = strlen(msg);
3 DES_Encrypt_string(msg , msg_len + 1, "akazwlan", &output);
4 base64_encode(output , &base64_output , out_len);
5 result = JNIEnv:: NewStringUTF (*env , (const char *)& base_output);

Improper Encryption Mode. The use of vulnerable modes such as Electronic
Code Book (ECB) in symmetric encryption is common. For Java style crypto
functions, we can obtain the encryption mode through analyzing its JNI param-
eters, searching certain string related to vulnerable mode (e.g., AES/ECB) and
pinpoint typical misuses. However, this approach is not effective when analyzing
native style crypto function if the implementation does not regulate the format
encryption mode. We address this through a heuristic detection: we observe that
most ECB encryptions are implemented within a loop to handle long messages.
In this loop, the message parameter is directly handled by the encryption rou-
tine instead of firstly masked by the IV. Hence, we first identify the encryption
routine with its name, and then check the caller function to search whether
the encryption routine is invoked in a loop. If so, the parameter of the routine is

312 Q. Wang et al.

checked with any related exclusive-or operation to find potential IV. The missing
of IV implies a misuse of ECB mode.

Obsolete Algorithms. To find obsolete crypto algorithms, the major source of
information is the function name. Notice that we can obtain the name of crypto
algorithms from JNI parameters and the exported interfaces, which indicates for
both Java style and Native style crypto functions the used obsolete algorithms
can be searched. Although this method is straight-forward, it is effective to find
typical misuse of crypto algorithm.

4 Evaluation

4.1 Dataset

To evaluate whether NativeSpeaker is able to analyze native code third-party
libraries and find crypto misuses, we build an app dataset with a corpus of 20,000
popular Android apps downloaded from myapp, the largest non-official Android
APP market. We unpacked apps and extract 20,353 ARM native code shared
library files. We observed due to the strict regulation of Google Play market,
many popular apps are not uploaded. Instead, users are often leaded to website
of third-party non-official Android app markets to download them. Moreover,
some apps are published to both Google Play market and non-official Android
app markets, and the released versions for non-official Android app markets are
usually different from that for Google Play market (e.g., add some functionalities
not allowed by Google Play market). As a result, we choose to build the dataset
through collecting apps from a non-official Android app market to cover more
apps in use and find more potential flaws.

In our dataset, the chosen apps possess the following features: (1) Each app
had been downloaded by at least 30,000 times. The top 12.5% (2,496 in 20,000)
own more than one million users. (2) The category of these apps are various
including shopping, gaming, news, traveling, social contacting, etc., Therefore,
if any flaw is found in those apps, its influence is significant and it is expected
to infect a huge amount of users.

4.2 Native Code Analysis

After unpacking the 20,000 apps and extracting the 20,353 native code shared
libraries, we further disassembled those binaries to collect more information.
We leveraged the objdump utility and the state-of-the-art disassembler IDA Pro
(version 6.95) to analyze the collected native code. We found that among all
shared libraries, there were 279 malformat files containing no export function
information. Our manual analysis revealed that those files adopt native code
packing protection. In addition, there are 13 files adopting anti-analysis pro-
tection and IDA Pro is not able to disassemble them. Since the code protection
issues are outside the scope of this paper, we choose to ignored those failure cases.

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 313

Table 2. The 15 most popular Android native code libraries

Library Name Occurrence Functional Description

liblocSDK6a.so 2721 Geographic Information System service

ibbspatch.so 2017 Incremental updating

libunity.so 1205 Game engine

libmono.so 1203 Game engine

libweibosdkcore.so 1156 Social networking services

libtpnsSecurity.so 1064 Security service

libtpnsWatchdog.so 972 Security service

libmain.so 935 Game engine

libgame.so 882 Game engine

libBugly.so 847 Crash information service

libcocklogic.so 766 Task restart service

libidentifyapp.so 750 Security service

libcasdkjni.so 743 In-app payment service

libgetuiext.so 665 Push service

libcocos2dcpp.so 636 Game engine

For the rest files, we then conducted a library deduplication process. According
to this analysis, 5,970 unique libraries were finally determined. For those library
files, we build their profiles including interface information, disassembled code,
and call graph through an automated analysis with IDAPython [2].

The deduplication of library significantly reduces the amount of analysis. As
Table 2 shows, each of the 15 most popular third party native code libraries is fre-
quently integrated by at least 600 different apps. In this situation, deduplicating
those repeatedly used library files saves unnecessary expenses.

4.3 Cryptographic Algorithm Recognition

We run our analysis on a HP Z840 machine, with an Intel Xeon E5-2643 v3,
12-thread processor. We use twelve threads to run analysis task concurrently,
the average time to analyze an so file is 4.75 s, and the cost of two function name
filtering is 30 ms, which is within an acceptable range.

The function boundary and disassembled code was generated by IDA, even
though identificating function boundary and resulting disassembled code with
IDA Pro is not perfect, it is sufficient in our scenario.

Java Crypto. In Java cryptographic function recognition, we select Java class
“javax.crypto.Cipher” as identification symbol. There are more than one way
to implement Java cryptographic function in Java code, such as Bouncy Castle
[1] and Spongy Castle [5], and these crypto libraries can be used in native code

314 Q. Wang et al.

theoretically. But in our research, we didn’t find any Java cryptographic method
implemented without the “javax.crypto.Cipher” class. In this Java class, devel-
opers could realize cryptographic ciphers such as AES (CBC), AES (ECB), DES
(CBC), DES (ECB), DESede (CBC) and DESede (ECB), all these ciphers could
be recognized by our work.

In the experiment, we found a total of 47 libraries using JNI interface to
invoke Java’s cryptographic algorithms, there are 122 such cryptographic algo-
rithms. The result is shown in Table 3. It is noteworthy that DES act as a
cryptographic algorithm that obey best practice principles are still used widely,
besides in the commonly used cryptos, blowfish, RC2, 3DES are all outdated
cryptographic algorithms.

Table 3. Java cryptographic function occurrence

Java cryptographic
function

Encrypt mode Occurrence

AES CBC 5

AES ECB 10

AES CFB 15

AES None 30

DES ECB 7

DES None 12

DESede CBC 4

DESede ECB 14

DESede None 2

RSA ECB 23

Among these cryptographic algorithms, AES has the highest usage, but most
of the scenarios that use AES are to encrypt a short string of information such
as a string, so the encryption mode is not used. In addition to AES, DES and
3DES algorithm are frequently used as well. We also found 23 cases using RSA
for encryption.

Native Crypto. In our experiment, the lowest value of the instruction number in
Native Style Crypto Identification is 20, we select the threshold as 50% and get
100,218 encryption/encoding functions. After our first function name filtering,
the remaining number of encryption/encoding functions with function names
is 42,897, and it reduces to 13,642 after the word segmentation. The result is
illustrated as Fig. 2.

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 315

Fig. 2. Native crypto result

Obviously, the Java cryptographic functions usage is significantly less than
the native cryptos. Reason for this may be the coding complexity for Java code
in native programming environment is very high, and there are many mature
cryptographic functions written in C language, such as OpenSSL project [4]
(Table 4).

Table 4. Cryptographic misuse in top 60 libraries

Function misuse Encryption mode
misuse

Parameter misuse

DES MD5 ECB Key IV Hard-coded Key

3 2 8 16 11 4

4.4 Cryptographic Misuse Detection

In order to analyze the misuse of cryptographic algorithms implemented in native
code, we performed manual analysis to 60 most frequently used shared libraries
implementing cryptographic algorithms. 21 of the 60 libraries misused crypto-
graphic algorithms, 3 of them used the obsolete DES algorithm, 16 of them
adopted the insecure ECB mode for encryption, we also found 27 cases using
predictable keys or IVs, 4 of them hard-coded the cryptographic key.

Case Studies. We describe a typical example which results in insecure commu-
nication in real world to illustrate the dangers of crypto misuse. In this example,
native libraries implement cryptographic algorithms incorrectly by using non-
random keys or IVs. We identify such libraries in three steps:

316 Q. Wang et al.

(i) We collect the shared libraries using communication-related APIs (e.g.
socket, send, sendto) in our dataset.

(ii) We analyze whether the collected libraries use non-random keys or IVs when
implementing cryptographic algorithms.

(iii) We further identify the shared libraries using such insecure cryptographic
algorithms to encrypt communication traffic.

We found a total of 13 native libraries existing such problems. We attempted
to decrypt the traffic sent out from these shared libraries, and successfully
restored the encrypted traffic from eight native libraries, the traffic content
included audio, video, program running information and so on. We couldn’t
trigger sockets in the remaining five cases, these libraries contained associated
code but provided no relevant call interface. We think these code may be depre-
cated or remains to be further developed in the future, and does not affect the
correctness of our identification scheme.

“Libanychatcore.so” is extracted from the Anychat SDK, it is used for trans-
mitting audio and video, and the content is encrypted by AES. We find it
hard-codes secret keys when analyzing its implementation of cryptographic algo-
rithms, the hard-coded key is “BaiRuiTech.Love”. This shared library is found to
be used by a popular stock app named DaZhiHui, which has been downloaded
more than 30 million times. We are able to decrypt the network traffic from
DaZhiHui with the extracted hard-coded key.

“Libgwallet.so” is a shared library used for in-app payments in games
released by GLU Mobile. It synchronizes data with the server, and the com-
munication is encrypted by AES. In our analysis, we find it uses a hard-coded
key “3A046BB89F76AC7CBA488348FE64959C” and a fixed IV “Glu Mobile
Games” for encryption. This shared library is used by more than 10 game apps
for synchronizing payment data with their servers. We conduct traffic analysis
to these apps and decrypt their payment data successfully.

5 Related Work

– Android Native Code: The sandboxing mechanisms can be feasible and
useful in restraining privileged API invoking from native code. NativeGuard
[21] is a framework isolates native libraries into a non-privileged application,
dangerous behavior of native code would be restricted by the sandbox mecha-
nism. Afonso et al. [7] complement the sandboxing mechanisms and generate
a native code sandboxing policy to block malicious behavior in realworld
applications. While for security flaws like crypto misuses in native code, the
sandboxing mechanisms are less effective.
Virtual machine based dynamic analysis platform provide a feasible way to
track information flow and implement dynamic taint analysis. Henderson
et al. [14] proposed a virtual machine based binary analysis framework, it pro-
vides whole-system dynamic binary analytical ability, for Android platform,
they include DroidScope [22] as an extension. DroidScope is a dynamic analy-
sis platform based on the Android Emulator, it reconstructs both the OS-level

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 317

and Java-level semantics simultaneously and seamlessly, and enable dynamic
instrumentation of both the Dalvik bytecode as well as native instructions.
NDroid [19] tracks information flows cross the boundary between Java code
and native code and the information flows within native codes.
All these dynamic analysis platform may incur 5 times overhead at least,
meanwhile, these techniques are not domain-specific and thus are less effec-
tive for assessing crypto misuse in native code of apps.

– Cryptographic Misuse in Android Applications: A number of efforts
have been made to investigate the cryptographic misuse problem in Android
Java code. Shao et al. [20] build the cryptographic misuse vulnerability model
in Android Java code, they conclude the main classes of cryptographic misuse
are misuse of cryptographic algorithm, mismanagement of crypto keys and use
inappropriate encryption mode. Egele et al. [11] made an empirical study of
the cryptographic misuse. They adopt a light-weight static analysis approach
to find cryptographic misuse in real word Android applications, but their
work only targets Dalvik bytecode, therefor, applications that invoke mis-
used cryptographic primitives from native code cannot be assessed out. Enck
et al. [13] design and execute a horizontal study of Android applications,
from a vulnerability perspective, they found that many developers fail to take
necessary security precautions. Our analysis complements all these research
efforts by performing an in-depth analysis focused on native code.

– Third Party Library Detection: Backes et al. [9] proposes a Android
Java library detection technique that is resilient against common code obfus-
cations and capable of pinpointing the exact library version used in apps.
Li et al. [15] collect a set of 1,113 libraries supporting common functionality
and 240 libraries for advertisement from 1.5 million Android applications,
they investigated several aspects of these libraries, including their popularity
and their proportion in Android app code. Li et al. [16] utilizes the internal
code dependencies of an Android app to detect and classify library candi-
dates, their method is based on feature hashing and can better handle code
obfuscation.

318 Q. Wang et al.

A Appendix

Monitored JNI Functions

AllocObject CallStaticBooleanMethod GetDoubleArrayRegion NewObjectA

CallBooleanMethod CallStaticBooleanMethodA GetDoubleField NewObjectArray

CallBooleanMethodA CallStaticBooleanMethodV GetFieldID NewObjectV

AllocObject CallStaticBooleanMethod GetDoubleArrayRegion NewObjectA

CallBooleanMethod CallStaticBooleanMethodA GetDoubleField NewObjectArray

CallBooleanMethodA CallStaticBooleanMethodV GetFieldID NewObjectV

CallBooleanMethodV CallStaticByteMethod GetFloatArrayElements NewShortArray

CallByteMethod CallStaticByteMethodA GetFloatArrayRegion NewString

CallByteMethodA CallStaticByteMethodV GetFloatField NewStringUTF

CallByteMethodV CallStaticCharMethod GetIntArrayElements NewWeakGlobalRef

CallCharMethod CallStaticCharMethodA GetIntArrayRegion PopLocalFrame

CallCharMethodA CallStaticCharMethodV GetIntField PushLocalFrame

CallCharMethodV CallStaticDoubleMethod GetJavaVM RegisterNatives

CallDoubleMethod CallStaticDoubleMethodA GetLongArrayElements ReleaseBooleanArrayElements

CallDoubleMethodA CallStaticDoubleMethodV GetLongArrayRegion ReleaseByteArrayElements

CallDoubleMethodV CallStaticFloatMethod GetLongField ReleaseCharArrayElements

CallFloatMethod CallStaticFloatMethodA GetMethodArgs ReleaseDoubleArrayElements

CallFloatMethodA CallStaticFloatMethodV GetMethodID ReleaseFloatArrayElements

CallFloatMethodV CallStaticIntMethod GetObjectArrayElement ReleaseIntArrayElements

CallIntMethod CallStaticIntMethodA GetObjectClass ReleaseLongArrayElements

CallIntMethodA CallStaticIntMethodV GetObjectField ReleasePrimitiveArrayCritical

CallIntMethodV CallStaticLongMethod GetPrimitiveArrayCritical ReleaseShortArrayElements

CallLongMethod CallStaticLongMethodA GetShortArrayElements ReleaseStringChars

CallLongMethodA CallStaticLongMethodV GetShortArrayRegion ReleaseStringCritical

CallLongMethodV CallStaticObjectMethod GetShortField ReleaseStringUTFChars

CallNonvirtualBooleanMethod CallStaticObjectMethodA GetStaticBooleanField reserved1

CallNonvirtualBooleanMethodA CallStaticObjectMethodV GetStaticByteField reserved2

CallNonvirtualBooleanMethodV CallStaticShortMethod GetStaticCharField reserved3

CallNonvirtualByteMethod CallStaticShortMethodA GetStaticDoubleField SetBooleanArrayRegion

CallNonvirtualByteMethodA CallStaticShortMethodV GetStaticFieldID SetBooleanField

CallNonvirtualByteMethodV CallStaticVoidMethod GetStaticFloatField SetByteArrayRegion

CallNonvirtualCharMethod CallStaticVoidMethodA GetStaticIntField SetByteField

CallNonvirtualCharMethodA CallStaticVoidMethodV GetStaticLongField SetCharArrayRegion

CallNonvirtualCharMethodV CallVoidMethod GetStaticMethodID SetCharField

CallNonvirtualDoubleMethod CallVoidMethodA GetStaticObjectField SetDoubleArrayRegion

CallNonvirtualDoubleMethodA CallVoidMethodV GetStaticShortField SetDoubleField

CallNonvirtualDoubleMethodV DefineClass GetStringChars SetFloatArrayRegion

CallNonvirtualFloatMethod DeleteGlobalRef GetStringCritical SetFloatField

CallNonvirtualFloatMethodA DeleteLocalRef GetStringLength SetIntArrayRegion

CallNonvirtualFloatMethodV DeleteWeakGlobalRef GetStringRegion SetIntField

CallNonvirtualIntMethod EnsureLocalCapacity GetStringUTFChars SetLongArrayRegion

CallNonvirtualIntMethodA ExceptionCheck GetStringUTFLength SetLongField

CallNonvirtualIntMethodV ExceptionClear GetStringUTFRegion SetObjectArrayElement

CallNonvirtualLongMethod ExceptionDescribe GetSuperclass SetObjectField

CallNonvirtualLongMethodA ExceptionOccurred GetVersion SetShortArrayRegion

CallNonvirtualLongMethodV FatalError IsAssignableFrom SetShortField

CallNonvirtualObjectMethod FindClass IsInstanceOf SetStaticBooleanField

CallNonvirtualObjectMethodA FromReflectedField IsSameObject SetStaticByteField

CallNonvirtualObjectMethodV FromReflectedMethod MonitorEnter SetStaticCharField

CallNonvirtualShortMethod GetArrayLength MonitorExit SetStaticDoubleField

CallNonvirtualShortMethodA GetBooleanArrayElements NewBooleanArray SetStaticFloatField

CallNonvirtualShortMethodV GetBooleanArrayRegion NewByteArray SetStaticIntField

CallNonvirtualVoidMethod GetBooleanField NewCharArray SetStaticLongField

CallNonvirtualVoidMethodA GetByteArrayElements NewDirectByteBuffer SetStaticObjectField

CallNonvirtualVoidMethodV GetByteArrayRegion NewDoubleArray SetStaticShortField

CallObjectMethod GetByteField NewFloatArray Throw

CallObjectMethodA GetCharArrayElements NewGlobalRef ThrowNew

CallObjectMethodV GetCharArrayRegion NewIntArray ToReflectedField

CallShortMethod GetCharField NewLocalRef UnregisterNatives

CallShortMethodA GetDirectBufferAddress NewLongArray

CallShortMethodV GetDoubleArrayElements NewObject

NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries 319

References

1. Bouncy castle. https://www.bouncycastle.org/
2. Ida-python. https://github.com/idapython/src/
3. N-gram wiki. https://en.wikipedia.org/wiki/N-gram
4. openssl project. https://www.openssl.org/
5. Spongy castle. https://rtyley.github.io/spongycastle/
6. Acar, Y., Backes, M., Bugiel, S., Fahl, S., McDaniel, P., Smith, M.: SoK: lessons

learned from android security research for appified software platforms. In: 2016
IEEE Symposium on Security and Privacy (SP), pp. 433–451. IEEE (2016)

7. Afonso, V.M., de Geus, P.L., Bianchi, A., Fratantonio, Y., Kruegel, C., Vigna, G.,
Doupé, A., Polino, M.: Going native: using a large-scale analysis of android apps
to create a practical native-code sandboxing policy. In: NDSS (2016)

8. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Not. 49(6), 259–
269 (2014)

9. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in android
and its security applications. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 356–367. ACM (2016)

10. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, pp. 621–
634. ACM (2009)

11. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 73–84. ACM (2013)

12. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS)
32(2), 5 (2014)

13. Enck, W., Octeau, D., McDaniel, P.D., Chaudhuri, S.: A study of android appli-
cation security. In: USENIX Security Symposium, vol. 2, p. 2 (2011)

14. Henderson, A., Prakash, A., Yan, L.K., Hu, X., Wang, X., Zhou, R., Yin, H.: Make
it work, make it right, make it fast: building a platform-neutral whole-system
dynamic binary analysis platform. In: Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis, pp. 248–258. ACM (2014)

15. Li, L., Bissyandé, T.F., Klein, J., Le Traon, Y.: An investigation into the use of
common libraries in android apps. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 403–414.
IEEE (2016)

16. Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue, R., Huo, W.: LibD:
scalable and precise third-party library detection in android markets. In: Proceed-
ings of the 39th International Conference on Software Engineering, pp. 335–346.
IEEE Press (2017)

17. Meng, X., Miller, B.P.: Binary code is not easy. In: Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis, pp. 24–35. ACM (2016)

https://www.bouncycastle.org/
https://github.com/idapython/src/
https://en.wikipedia.org/wiki/N-gram
https://www.openssl.org/
https://rtyley.github.io/spongycastle/

320 Q. Wang et al.

18. Mochihashi, D., Yamada, T., Ueda, N.: Bayesian unsupervised word segmentation
with nested Pitman-Yor language modeling. In: Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: vol. 1, pp. 100–108.
Association for Computational Linguistics (2009)

19. Qian, C., Luo, X., Shao, Y., Chan, A.T.: On tracking information flows through JNI
in android applications. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 180–191. IEEE (2014)

20. Shuai, S., Guowei, D., Tao, G., Tianchang, Y., Chenjie, S.: Modelling analysis
and auto-detection of cryptographic misuse in android applications. In: 2014 IEEE
12th International Conference on Dependable, Autonomic and Secure Computing
(DASC), pp. 75–80. IEEE (2014)

21. Sun, M., Tan, G.: NativeGuard: protecting android applications from third-party
native libraries. In: Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless & Mobile Networks, pp. 165–176. ACM (2014)

22. Yan, L.-K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic android malware analysis. In: USENIX Security Sym-
posium, pp. 569–584 (2012)

	NativeSpeaker: Identifying Crypto Misuses in Android Native Code Libraries
	1 Introduction
	2 Excavating Semantic Information of Native Code Library
	2.1 Challenges of Native Code Analysis
	2.2 Extracing Semantics in Native Code Library

	3 NativeSpeaker
	3.1 Preprocessing of Native Library
	3.2 Crypto Function Recognition
	3.3 Cryptographic Misuse Detection

	4 Evaluation
	4.1 Dataset
	4.2 Native Code Analysis
	4.3 Cryptographic Algorithm Recognition
	4.4 Cryptographic Misuse Detection

	5 Related Work
	A Appendix
	References

