
Detection and Analysis of Cryptographic Data

Inside Software�

Ruoxu Zhao, Dawu Gu, Juanru Li, and Ran Yu

Lab of Cryptology and Computer Security,
Dept. of Computer Science, Shanghai Jiao Tong University, Shanghai, China

Abstract. Cryptographic algorithms are widely used inside software
for data security and integrity. The search of cryptographic data (in-
clude algorithms, input-output data and intermediated states of opera-
tion) is important to security analysis. However, various implementations
of cryptographic algorithms lead the automatic detection and analysis
to be very hard. This paper proposes a novel automatic cryptographic
data detection and analysis approach. This approach is based on execu-
tion tracing and data pattern extraction techniques, searching the data
pattern of cryptographic algorithms, and automatically extracting de-
tected Cryptographic algorithms and input-output data. We implement
and evaluate our approach, and the result shows our approach can de-
tect and extract common symmetric ciphers and hash functions in most
kinds of programs with accuracy, effectiveness and universality.

Keywords: Cryptographic data, Symmetric Cipher, Hash Function,
Data Pattern, reverse engineering.

1 Introduction

The use of cryptographic algorithms to protect private information is common in
software. Software dealing with huge amount of data such as Archive and com-
pression tools, Disk encryption tools, Instant Messengers often use symmetric
ciphers and hash functions to encrypt, decrypt and verify the data.

In practice, the complexity of binary program understanding makes analysts
hard to identify which ciphers are inside the software, even only standard algo-
rithms such as the AES, RC4 or SHA-1 are used. What’s more, many programs
achieve security through obfuscation. For instance, SkyPE uses RC4 algorithm
while obfuscating it so that analysts spent years to understand[5]. It is important
to develop automatic techniques for the analysts to detect specific cryptographic
algorithms before security analysis.

Compared to the theoretical analysis of cryptographic algorithms, the anal-
ysis of the implementation is at most a craft rather than a science [12] [8] [9].
The main difficult is that the implementations of one algorithm might be var-
ious even if the mathematical abstraction is the same. For instance, the AES

� Supported by SafeNet Northeast Asia grant awards.

X. Lai, J. Zhou, and H. Li (Eds.): ISC 2011, LNCS 7001, pp. 182–196, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Detection and Analysis of Cryptographic Data Inside Software 183

takes different implementations on 8-bit platform and 32-bit platform. Many
cryptography libraries also use loop unwinding to optimize the algorithms and
yet change the form of implementations. Malicious program even modifies or
obfuscates the code, trying to fail the analysis. How to identify cryptographic
algorithm inside program accurately and effectively is still an open problem that
the existing tools cannot solve perfectly.

In this paper, we take the first leap toward cryptographic data detection and
analysis based on the data pattern. To the best of our knowledge, all existing
cryptographic algorithm identification techniques focus on program analysis or
memory dump analysis [11] [6]. These techniques try to recover the abstract
structure of algorithms inside programs or dumped memory and judge the exis-
tence of certain ciphers. Our approach, however, observes the data feature and
dependency of specific ciphers during runtime information. We do program trac-
ing first and conduct data analysis to extract the so called data pattern, which is
the input-output of certain instruction collection. The pattern gives the analyst
clues to quickly detect and understand the encryption process of the program.
We implement an analysis system to achieve the goal of automatic identification,
and the results show that our system can not only detect symmetric ciphers and
hash functions in most kinds of programs with high accuracy, but could also
extract cryptographic parameters such as expanded round key automatically.

The approach we proposed is able to reduce manual work significantly in
debugging, forensic analysis and reverse engineering. Furthermore, the universal
model we adopted is expected to be applied to different implementations of the
same cipher regardless of the programming language.

2 Background and Related Work

Identification of cryptographic algorithm and data is an important yet seldom
discussed topic in program analysis research. State of the art tools and tech-
niques for cryptographic algorithm identification are divided into static based
and dynamic based. In this section we summarize existing works and discuss
their inadequacy.

2.1 Static Analysis Based Approaches

Static analysis based cipher identification is the most widely used technique.
Many tools have been developed to help analyzing such as Krypto Analyzer
(KANAL) and SnD Crypto Scanner. The key step of static analysis is to parse
binary or source code of the program and try to find unique pattern of spe-
cific ciphers. Static analysis based approaches strongly rely on signatures, which
are often the constant values related to certain ciphers or specific instruction
sequence related to certain version of cryptographic libraries. The static based
approaches have many defects. First, they often rely on pre-build signature li-
braries, and detection fails when the signature changes with software updating
or code re-compile. Second, they cannot deal with packed programs because the



184 R. Zhao et al.

normal code is compressed or encrypted before execution. Finally, static anal-
ysis based approaches only detect the existence of ciphers, but cannot analyze
particular encryption and decryption data.

2.2 Dynamic Analysis Based Approaches

Dynamic analysis of software is the hot topic of security analysis in recent years
especially using emulation technique or program instrumentation. Although
many approaches and tools have been developed to do universal analysis[2]
[4], Felix Gröbert’s work[7] is the first significant dynamic analysis focusing on
cipher identification. His work uses PIN tools[10] to dynamic trace the pro-
gram, and then mixes signature based searching with simple memory recon-
struction and searching. However, the model adopted by [7] takes advantage
of many observation. For instance, the proposed signature-based and generic
bitwise-arithmetic/loop based identification methods are all based on signatures
or unique tuples, which are not so dynamic and universal. The only general
identification method in [7] is generic memory-based identification method. The
method is focused on memory data and uses verifiers to confirm an XOR encryp-
tion or a relation- ship between the input and output of a permutation box. A set
of possible key, plaintext, and ciphertext candidates are passed to a reference im-
plementation of the particular algorithm. If the output of the algorithm matches
the output in memory, the verifier has successfully identified an instance of the
algorithm including its parameters. Although this method exploits relationship
between plaintext and ciphertext, many potential information is ignored. On
the other hand, in digital forensic research, novel methods for cryptographic key
identification in RAM are proposed[11] which relies on the property that the
keys in memory is far more structured than previously believed.

In this paper we combine the dynamic analysis with structured key data.
First we define the input-output of certain instruction collection as data pattern,
then using the concept of data pattern we can easily analyze the uniqueness of
cryptography algorithms by exploit details about the algorithms. For instance,
according to the key concept of Symmetric ciphers - pseudorandomness, we can
search and find the pseudorandom data pattern and test if the data pattern
correspond to certain Symmetric ciphers.

3 Cryptographic Data Pattern Analysis

Our goal is to automatically detect cryptographic data, which includes the exe-
cuted instructions of cryptographic primitives, encrypted data and secret keys.
The main idea is to analyze a program’s runtime data[1] rather than instructions
and generate some data patterns matching to certain cryptographic primitives.

Although the mathematical definition of cryptographic primitives are deter-
minate, the implementations of the same cryptographic algorithm can be quite
different. For example, real-world programs may use optimizations like table
lookup to speed up the cryptographic algorithms(e.g., AES fast implementa-
tion). Common cryptographic libraries such as OpenSSL and Crypto++ also



Detection and Analysis of Cryptographic Data Inside Software 185

take different approaches to implement the same algorithm. Programmers may
even have their custom implementations. What’s more, code obfuscation is often
used to protect software, which makes the obfuscated code extremely difficult
to analyze. However, we discovered that the input and output data must fulfill
certain relations for deterministic algorithms. That is, if the input is given, there
should be only one single possible output to a deterministic algorithm. By veri-
fying if the input and output data match the pattern of a certain algorithm, we
can say that a program execution contains the data characteristics of a certain
algorithm with high credibility. Even if the program is obfuscated, the input and
output data has to be present in the program execution data, which can be then
analyzed regardless how the data is processed.

Because the size of traced data is usually very large, we have to determine
the data sampling points. We found that modern computer programs are highly
structured. The control flow of a traced program tells us how a program is
executed. Although instructions are not important to data analysis, they help
to build up high-level structures of traced programs. In our analysis, we have
four levels of data representations during the analyzing process. The structure
of these high-level representations are shown in Figure 1.

Fig. 1. Data Representations

Instruction-Data Unit. An Instruction-Data Unit is the basic unit of program
tracing. It contains the instruction binary data, register values, linear address,
memory access information, etc. A traced file usually contains millions of
Instruction-Data Units.

Dynamic Basic Block. A Dynamic Basic Block(Dynamic BBL) contains a se-
quence of instructions to form a fixed group which has only one entering and
one exiting instruction. The Dynamic Basic Block Generation algorithm is a
little different than static ones, because we have to determine the control flow
according to the actual traced result.

Code Block. A Code Block(CBL) consists of a sequence of continuous Dynamic
BBLs that are executed without calling other functions. That is, a new CBL is



186 R. Zhao et al.

generated when a call instruction is executed. Code Blocks are used to construct
the Call Hierarchy of a function.

Call Hierarchy. A Call Hierarchy of a traced program is a recursive structure of
Code Blocks, represented by a Code Block List(CBL List). A CBL List contains
a single function call, which may call other functions during its execution, thus
a CBL List may contain other CBL Lists to build up the recursive structure of
a function call.

3.1 Data Patterns

Based on the concept of Instruction-Data Flow, the analyst could extract Inter-
mediate Data State at any arbitrary time of execution. The Intermediate Data
State contains the virtual memory state after certain instructions are executed.
As mentioned earlier, we made the assumption that the parameters of crypto-
graphic primitives must appear in memory during its execution. Our goal is to
verify the existence of cryptographic algorithms by examining if the input and
output parameters which match a certain pattern are contained in memory, and
therefore we can extract the parameters.

A data pattern are defined as the mathematical relationship between the
input and output data of a particular cryptographic algorithm. We know that for
deterministic algorithms, output data is determined once the input data is given.
This pattern is the key feature that is used in our analysis. It is unnecessary to
know specifically how an algorithm is implemented in the target program; all we
have to do is to verify the relationships between input and output data using our
own implementation. Basically, the data pattern for any cryptographic algorithm
is unique and concrete, therefore it can be used as a signature of algorithms in
our analysis.

Dynamic Data Patterns. A dynamic data pattern is a group of data that
matches one or more data templates at runtime. Dynamic data patterns must
be verified at runtime, because the content of data cannot be pre-defined. Some
examples of dynamic data patterns are:

– Feistel cipher
Feistel cipher encryption takes plaintext and a group of keys as input, and
ciphertext as output. Here the plaintext, ciphertext and keys are not pre-
defined, but can be verified during runtime. We describe the Feistel cipher
encryption calculation as F (pt, k), which takes the plaintext(pt) and keys(k)
as input parameters, and outputs the ciphertext(ct). By dynamically verifing
if pt, k and ct satisfy ct = F (pt, k), we can verify the existence of the data
pattern of Feistel cipher encryption.

– Rijndael key expansion
Rijndael key expansion is used to expand a short key into a group of separate
round keys. Also, neither the input key nor the expanded keys can be pre-
defined.



Detection and Analysis of Cryptographic Data Inside Software 187

– RC4 key scheduling
Similar to Rijndael key expansion, the input and output of RC4 key schedul-
ing is unknown until runtime.

Static Data Patterns. Unlike dynamic data patterns, static data patterns
can be pre-defined. They can be simply a block of data with known content.
A good example of static data patterns is the 256-byte S-box and inverse S-
box for AES. Their content is pre-determined and usually directly appear in
memory. Another example is the constants in hash functions such as SHA-1.
In our analysis, we do not directly use constant signatures as direct evidence
of existence of cryptographic algorithms, but they can be used to locate the
cryptographic routines.

Data Element Formats. The Intermediate Data State of a program trace at
any arbitrary time consists of a group of memory chunks. A memory chunk is a
block of memory that is continuous in its linear address, demonstrated in Figure
2. Data elements are extracted from these memory chunks. There are three kinds
of data elements in our analysis:

– Fixed length. For example, a 128-bit memory chunk containing a block of
AES plaintext.

– Variable length. For example, the expanded key in RC4 can be either 256
bits(8-bit each element) or 1024 bits (32-bit each element).

– Arbitrary length. For example, the input key in Blowfish can be from 1 bit
to 448 bits.

Fig. 2. Memory Chunk

Another thing we should pay attention to is that data elements are usually
aligned. In x86 architecture, a block of memory usually has a 32-bit alignment
to get maximum performance. So we treat alignment as another property for
data elements.

4 Implementation

Our whole program analysis system consists of two parts: the front end is a
tracing engine called Fochs, and the back end is a program analyzer called Lochs.
A system architecture overview is shown in Figure 3.

To conduct an analysis, the testing programs are first executed in Fochs pro-
gram tracer. The trace is done manually, and its result is saved to trace database
for analysis. Then traced data is analyzed in Lochs program analyzer, where
possible cryptographic algorithms are examined. After the analysis, a report is
generated with the analysis results.



188 R. Zhao et al.

Fig. 3. System Architecture Overview

4.1 Fochs: Data Tracing System

The data tracing system we use is the digital forensic analyzer called Fochs. Fochs
is based on the open-source Bochs x86 PC emulator[3]. The reason why we choose
Bochs is that Bochs performs full-system emulation, and we can conveniently
access the CPU status and memory status. We modifies Bochs so that it can trace
program execution including its context, and save the trace result for further
analysis. The structure of Fochs is shown in Figure 4.

Fig. 4. Fochs program tracer

To get a valid and usable trace result, there are three major problems we
should solve: what context data should be traced during program execution,
which instructions should be traced, and how can we pick the process we want
to trace in a multi-process environment. We analyzed our requirements and came
up with solutions to these problems.

Execution Context. To get a valid program trace result, we have to log the
register values and memory accesses for each instruction. We figured that only
the register values before each instruction execution are necessary for our anal-
ysis, so only the values of general purpose registers before each instruction ex-
ecution are traced. We also found that in common cases, each instruction has
at most one memory reading and one memory writing in the current x86 ar-
chitecture, thus one memory reading and writing is traced for each instruction.



Detection and Analysis of Cryptographic Data Inside Software 189

Another important value is the linear address of each instruction, which is the
Instruction Pointer register value. Also the instruction binary code is traced for
disassembling.

Some repeat speedup instructions may have multiple memory accesses in a
single instruction execution. In our implementation of Fochs, we trace the in-
struction whenever it has more than one memory access of the same type (read-
ing/writing), acting like a single instruction executed multiple times. We also
disabled the MMX and SSE instructions so that no more than 32-bit size of
memory can be access during one cycle of instruction execution.

Instruction Filtering. If we trace every instruction that CPU executes, the
result would be tremendous. We have to eliminate the number of instruction
traced to focus on the instructions that contain our analyzing target. We do
instruction filtering primarily based on the linear address. In Windows operating
system, user space and kernel space are separated, where user space is in low
address and kernel space is in high address. The address where an executable is
loaded into memory can be easily found using any PE analysis tool or debugger.
We limit the linear address that we trace to the bounds of the traced executables,
and in this way we are able to ignore the unnecessary OS execution code such
as process scheduling, and unnecessary user-space DLLs are also ignored. A
configuration module is used to provide different configurations to trace different
programs.

There are also times that only the instructions with memory accesses should
be traced, because our analysis is based on memory data, and those instructions
that have no memory access can be ignored. However, we still have to keep the
branch instructions to build high-level representations such as Code Blocks and
Call Hierarchy.

Process Tracking. Another critical feature that should be provided by the
tracer is that only one single process is traced in a multi-process environment.
In Windows operating systems, each process has a unique CR3 register value.
CR3 register is used to locate page directory address for the current process. We
track a process by filtering the CR3 register value: first, the entry address for
each executable is manually obtained, and then whenever CPU runs to the entry
point, the current CR3 register value is saved, which is the unique value for the
desired process. In this way, we can successfully get rid of the interference of
other unrelated processes.

By instruction filtering and process tracking, the trace can be focused on a
single process. But still, the number of traced instructions can be quite large,
usually 106 (100MB data) to 107 (1GB data). So the traced result has to be
saved to disk for further analysis.

4.2 Lochs: Data Analysis System

The back end of our program analyzing system is called Lochs. Lochs analyzes
cryptographic primitives of the traced results of Fochs automatically. There are



190 R. Zhao et al.

three stages of data analysis. First, Lochs constructs high-level structures of
the traces, including Dynamic Basic Blocks, Code Blocks and Call Hierarchies;
and then, data reduction is performed to eliminate the unnecessary data to
be analyzed; at last, Lochs does template verifications on the selected data to
examine cryptographic algorithms and their parameters. The structure of Lochs
is shown in Figure 5.

Fig. 5. Lochs program analyzer

High-Level Representations. Before data analysis, we have to extract data
from the traces first. The points where Intermediate Data States are sampled are
critical to our analysis, because we have to select the points where cryptographic
data is most likely to appear. We may sample memory data at each instruction
trace, but this is obviously impossible to analyze for common traces that con-
tain 107 instructions. To solve this problem, we first construct high-level rep-
resentations for the traces. Three levels of data representation are constructed:
Dynamic Basic Blocks, Code Blocks and Call Hierarchies(CBL Lists). The al-
gorithms to build these high-levels are mentioned earlier. These representations
are constructed only once and then serialized to or deserialized from disk for
future uses.

In the first stage of analysis, trace results are converted from binary data
to CBL Lists. These CBL Lists are passed on to the second stage for further
processing.

Heuristic Data Reduction. A complete trace of a program often contains
huge amount of data unrelated to cryptography, even though these data is pre-
filtered in the tracing process. These unrelated data may include program ini-
tialization, GUI operations, user input handling, error handling, etc. Therefore,
a highly-optimized data reduction is performed in the second stage to reduce
analysis time. After Call Hierarchies are constructed, heuristic data reductions
are conducted on these Call Hierarchies which are represented by CBL Lists.
Currently we have mainly three kinds of data reduction methods.

– CBL List Depth
Functions that contain cryptographic primitives usually have a lower depth.
That is, these functions usually have a single purpose, and they are less
likely to call other functions because of performance issues. Therefore, cryp-
tographic functions are most likely to appear in the inner CBL Lists, which
have a low depth value.



Detection and Analysis of Cryptographic Data Inside Software 191

During the data reduction procedure, we first filter the CBL Lists accord-
ing to their depth value. A threshold of depth 6 is reasonable to most of the
analysis.

– Exclusive-OR Instructions
Through observations to cryptographic algorithms, the exclusive-or oper-
ation is heavily used. The second data reduction method is based on the
idea that cryptographic functions should contain a certain percentage of
exclusive-or instructions. This heuristic method is applicable because we
can safely judge that a function contains no cryptographic primitives if it
has no exclusive-or operations.

– Characteristic Constants
Many cryptographic algorithms and their implementations contain charac-
teristic constants. For example, in the fast implementation of AES, a 1k-size
lookup table is commonly used; in hash functions like MD5 and SHA-1, sev-
eral pre-defined constants are quite unique and must be used. These charac-
teristics are used to filter CBL Lists for a specific algorithm, and those CBL
Lists where characteristic constants appear are analyzed first.

Through data reduction, usually more than 90% of total data can be reduced.
The reduced data is then passed to algorithm detectors to test if it contains a
specific data pattern.

Data Verification. In the final stage of analysis, data is extracted from their
high-level representations, and algorithm verifiers verify the extracted data to
test if it satisfies a certain data pattern. Based on our earlier observation that
program functionalities are implemented in the unit of functions, data analysis
is conducted on Call Hierarchies. A Call Hierarchy is the representation of an
entire function call, including its data. We compute the input and output for each
function call, and verify if these data matches any data pattern of cryptographic
algorithms.

First, for each CBL List l, we compute its input data IN(l) and output data
OUT (l). Data exists in format of continuous memory chunks, which may contain
cryptographic parameters.

Then, for a specific cryptographic algorithm, its data format is pre-defined.
Possible data element combinations are extracted recursively, and passed to ver-
ifiers to test cryptographic algorithm existence and extract parameters.

At last, the verifier receives data elements, and test if they satisfy a pre-
defined pattern. Each verifier implements a reference algorithm. This algorithm
can be quite simple (testing constant existence), or rather complicated (AES
block encryption). If a group of data elements matches a pre-defined pattern,
the parameters are extracted from the data elements, and the detection pro-
cedure is successful. We can expand the usage of our system by implementing
more reference algorithms, and add them to the Reference Algorithms mod-
ule in Lochs, as shown in Figure 5. The extensibility of our analysis system is
guaranteed by its modular architecture.



192 R. Zhao et al.

5 Evaluation

We do our experiments using real-world applications as well as custom programs.
There are five kinds of testing programs:

– Compression tools, including RAR 3.93 (AES encryption, SHA-1 hashing)
and FreeArc 0.666 (Blowfish encryption)

– File encryption tools, including AES Crypt 3.08 (AES file encryption) and
TrueCrypt 7.0a (disk formatting using AES encryption)

– Cryptography softwares, including Putty 0.60 (login sessions with AES/
Blowfish encryption) and KeePass Password Safe 1.19b (password database
saving)

– Custom programs with different implementations, including AES-OpenSSL
(AES 128-bit and 256-bit block cipher), AES-OpenSSL-CBC (AES CBC
mode cipher), MD5-OpenSSL (MD5 message digest), SHA1-OpenSSL (SHA-
1 message digest), AES-Custom-Impl (a custom implementation of AES),
RC4-OpenSSL (RC4 cipher), RC4-Custom-Impl1 (a custom implementation
of RC4) and RC4-Custom-Impl2 (another different custom implementation
of RC4).

– Custom programs obfuscated by VMProtect and Themida, including custom
programs with AES, RC4, SHA-1 OpenSSL implementations that both the
executable and OpenSSL libraries(libeay32.dll, ssleay32.dll) are obfuscated
by VMProtect, and a custom program with AES OpenSSL implementation
that only the executable is obfuscated by Themida and the OpenSSL libraries
are original.

We implemented 8 reference algorithms, which are: AES 128-bit key expan-
sion/block cipher, AES 256-bit key expansion/block cipher, Blowfish key schedul-
ing, RC4 key scheduling, MD5 message digest and SHA-1 message digest. The
block ciphers take a block of data and a group of expanded keys as input, and
a block of data as output. The key expansions and key schedulings take a short
key as input, and an expanded key as output. And the message digests take a
block of data and an input message digest as input, and an updated message
digest as output.

We run all of the reference algorithms on each of the traces of test programs.
The testing results and performance analysis are shown in the following sections.

5.1 Accuracy

We successfully discovered the existing pre-known algorithms in all of the test-
ing programs, and extracted the parameters including AES keys, plaintexts and
ciphertexts, Blowfish keys, RC4 keys, MD5 input data and SHA-1 input data.
There are some flaws that we failed to discover AES block cipher in Putty AES
encrypted login session, and the AES block cipher in our custom implementa-
tion of AES. We also found a previously unknown SHA-1 algorithm in the first
custom implementation of RC4. We also successfully discovered the underlying
algorithms as well as the plaintexts, ciphertexts and secret keys in programs



Detection and Analysis of Cryptographic Data Inside Software 193

obfuscated by VMProtect[14] and Themida[13], and the analysis results are the
same as the results without code obfuscation. The analysis results of testing
programs are shown in Table 1.

Table 1. The Test Results

algorithm(s) key expansion/key scheduling

RAR 0 SHA-1
RAR 1 AES(128-bit) encryption AES-128 Key Expansion
FreeArc - Blowfish Key Scheduling
AES Crypt AES(256-bit) encryption AES-256 Key Expansion
TrueCrypt - AES-256 Key Expansion
Putty(AES) - AES-256 Key Expansion
Putty(Blowfish) - Blowfish Key Scheduling
KeePass AES AES(256-bit) encryption AES-256 Key Expansion
AES128-OpenSSL-ECB AES(128-bit) encryption AES-128 Key Expansion
AES256-OpenSSL-ECB AES(256-bit) encryption AES-256 Key Expansion
AES128-OpenSSL-CBC AES(128-bit) encryption AES-128 Key Expansion
AES-Custom-Impl AES(128-bit) encryption AES-128 Key Expansion
RC4-OpenSSL RC4 - RC4 Key Scheduling
RC4-Custom-Impl1 - RC4 Key Scheduling
RC4-Custom-Impl2 - RC4 Key Scheduling
MD5-OpenSSL MD5 -
SHA1-OpenSSL SHA1 -
AES128-VMProtect AES(128-bit) encryption AES-128 Key Expansion
AES256-VMProtect AES(256-bit) encryption AES-256 Key Expansion
RC4-VMProtect - RC4 Key Scheduling
SHA1-VMProtect SHA1 -
AES256-Themida AES(256-bit) encryption AES-256 Key Expansion

It’s shown that our approach can successfully identify the same algorithm with
different implementations. For example, one of the two custom implemented ver-
sions of RC4 uses a 32-bit memory to store an 8-bit value, while the other uses an
8-bit memory. Another example is that we use a regular implementation of AES
as well as a fast implementation, which has optimizations such as table lookup.
Our analysis doesn’t rely on a specific implementation of a certain algorithm, so
both implementations are successfully identified.

Real-world softwares may have countermeasures against this analysis method.
For example, continuous memory chunks can be broken into smaller chunks to
avoid matching a certain data pattern. However, these countermeasures require
specific programming, and we did not find any software that uses such a counter-
measure. To cope with these countermeasures, we can use non-perfect matching
such as fuzzy matching, which gives a high possibility of the existence of certain
algorithms.

False negatives may occur if the software contain countermeasures against this
method. In our evaluation, 2 cases only identified AES key expansion process
but not the AES encryption. One of the possible reasons is that our analysis



194 R. Zhao et al.

optimization ignored deeper function calls which contain the encryption pro-
cess. We can refine the optimization stage to resolve this issue. Because of the
uniqueness of cryptographic data, false positives can be very rare. Real-world
softwares hardly contain cryptographic data in both the input and output of a
function call, which actually has no cryptographic primitive. We found no false
positives during our analysis.

These test results demonstrated that our analysis is successful, in both real-
world applications and custom implemented programs, and can be used to ana-
lyze obfuscated code.

5.2 Performance

The tracing process is usually manually operated, and the tracing time is trivial
and can be ignored. The later analyzing process is fully automated, and the time
of each analyzing stage is recorded and listed below, where Stage 1 represents the
construction of high-level representations(Dynamic BBL, CBL, and CBL List),
and the algorithm names represent time used to analyze each algorithm.

The performance evaluation is shown in Table 2, including the total number
of instructions and file size of each trace, the analysis speed (in instructions per
second), time used for each stage and algorithm, and the total time used. The
results show that the average file size is about 500MB(5M instructions), the

Table 2. Performance

Instructions Size Speed (instrs/sec) Total Time

RAR 0 919k 77MB 19.4k 47s
RAR 1 1,359k 114MB 9.6k 2m22s
FreeArc 7,786k 653MB 34.6k 3m45s
AES Crypt 2,396k 201MB 14.1k 2m50s
TrueCrypt 12,800k 1,074MB 15.0k 14m11s
Putty (AES) 3,651k 306MB 14.5k 4m11s
Putty (Blowfish) 7,297k 612MB 18.2k 6m42s
KeePass 9,005k 755MB 22.5k 6m40s
AES-OpenSSL-128 5k 467KB 9.2k < 1s
AES-OpenSSL-256 6k 500KB 7.9k < 1s
AES-OpenSSL-CBC 6k 510KB 20.3k < 1s
AES-Custom-Impl 11,294k 947MB 17.7k 10m36s
RC4-OpenSSL 10k 840KB 14.5k < 1s
RC4-Custom-Impl1 298k 25MB 36.3k 8s
RC4-Custom-Impl2 10,078k 845MB 16.5k 10m13s
MD5-OpenSSL 4k 383KB 16.8k < 1s
SHA1-OpenSSL 5k 465KB 23.7k < 1s
AES128-VMProtect 6k 549KB 20.9k < 1s
AES256-VMProtect 7k 581KB 6.6k 1s
RC4-VMProtect 10k 869KB 21.8k < 1s
SHA1-VMProtect 7k 619KB 31.2k < 1s
AES256-Themida 20k 1MB 14.4k 1s



Detection and Analysis of Cryptographic Data Inside Software 195

average analysis speed is about 15k instructions per second, and the analysis
time is usually within or around 10 minutes.

The performance results also show that the most time consuming part is the
constructions of high-level representations, and that analysis for RC4 is most time
consuming among all these algorithms, because there is no constant heuristic data
reduction for RC4. The time spent for other algorithms is almost the same.

6 Conclusion

In this paper we have presented a novel approach of analysis of cryptographic
data. We use a two-stage method to trace and analyze program data. First, dy-
namic data tracing is conducted based on full system emulation. The trace results
are saved for further analysis. Then, we use an automatic analyzer to perform
cryptographic data analysis on the trace results. The target of our analysis is to
identify cryptographic algorithms and to extract their parameters. We studied
the data patterns for symmetric ciphers AES, Blowfish, stream cipher RC4, and
cryptographic hash functions MD5 and SHA-1, and implemented their reference
algorithms. In the analysis phase, the high-level representations of traces are first
constructed, including Dynamic Basic Blocks, Code Blocks and Call Hierarchies.
Then, heuristic data reductions are conducted to reduce the size of data to be
analyzed. And at last, we use the reference algorithms to verify the existence of
certain algorithms and extract their parameters.

It is possible to extend our analysis method to asymmetric cryptographic al-
gorithms. For example, it’s possible to identify RSA encryptions/decryptions
which comply with PKCS formats. However the analysis process can be much
slower, because the asymmetric algorithms usually take much longer time than
symmetric algorithms. It’s quite difficult to identify custom asymmetric algo-
rithms because of the irregularity of asymmetric cryptographic data.

We did our experiments on 22 Windows programs, including both real world
applications and custom implemented programs, and some of them are obfus-
cated using VMProtect or Themida. We successfully identified the existing cryp-
tographic algorithms in these programs, and extracted the keys or input data
of these programs. For most of the programs that contain symmetric cipher we
also extracted the plaintext and ciphertext. The programs with code obfuscation
are also successfully analyzed. The analysis result showed the universality and
effectivity of our analysis method.

References

1. Bhansali, S., Chen, W., De Jong, S., Edwards, A., Murray, R., Drinić, M., Mihočka,
D., Chau, J.: Framework for instruction-level tracing and analysis of program exe-
cutions. In: Proceedings of the 2nd International Conference on Virtual Execution
Environments, p. 163. ACM, New York (2006)

2. Caballero, J., Yin, H., Liang, Z., Song, D.X.: Polyglot: automatic extraction of
protocol message format using dynamic binary analysis. In: Proceedings of the
2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, pp. 317–329 (2007)



196 R. Zhao et al.

3. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
Data Lifetime via Whole System Simulation. In: USENIX Security Symposium,
pp. 321–336. USENIX (2004)

4. Cui, W., Peinado, M., Chen, K., Wang, H., Irun-Briz, L.: Tupni: Automatic Reverse
Engineering of Input Formats. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 391–402. ACM, New York (2008)

5. De-obfuscating the RC4 layer of Skype, http://lukenotricks.blogspot.com/

2010/08/de-obfuscating-rc4-layer-of-skype.html

6. Findcrypt plugin,
http://www.hexblog.com/ida_pro/files/findcrypt2.zip

7. Gröbert, F.: Automatic Identification of Cryptographic Primitives in Software.
Diploma Thesis, Ruhr-University Bochum (2010)

8. Janssens, D.: Heuristic methods for Locating Cryptographic Keys Inside Computer
Systems. PhD thesis, Katholieke Universiteit Leuven (1999)

9. Janssens, D., Bjones, R., Claessens, J.: KeyGrab TOO - The search for keys con-
tinues..., Whitepaper, Utimaco Safeware AG, KU Leuven (2000)

10. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V., Hazelwood, K.: Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 190–200. ACM, New
York (2005)

11. Maartmann-Moe, C., Thorkildsen, S., Årnes, A.: The persistence of memory: Foren-
sic identification and extraction of cryptographic keys. Digital Investigation 6, 132–
140 (2009)

12. Shamir, A., van Someren, N.: Playing Hide and Seek with Stored Keys. In: Franklin,
M. (ed.) FC 1999. LNCS, vol. 1648, pp. 118–124. Springer, Heidelberg (1999)

13. Themida - Oreans Technology: Software Security Defined,
http://www.oreans.com/themida.php

14. VMProtect Software Protection, http://vmpsoft.com

http://lukenotricks.blogspot.com/2010/08/de-obfuscating-rc4-layer-of-skype.html
http://lukenotricks.blogspot.com/2010/08/de-obfuscating-rc4-layer-of-skype.html
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.oreans.com/themida.php
http://vmpsoft.com

	Detection and Analysis of Cryptographic Data Inside Software
	Introduction
	Background and Related Work
	Static Analysis Based Approaches
	Dynamic Analysis Based Approaches

	Cryptographic Data Pattern Analysis
	Data Patterns

	Implementation
	Fochs: Data Tracing System
	Lochs: Data Analysis System

	Evaluation
	Accuracy
	Performance

	Conclusion
	References




