
Nightingale: Translating Embedded VM Code
in x86 Binary Executables

Xie Haijiang1,2, Zhang Yuanyuan1(B), Li Juanru1, and Gu Dawu1

1 Shanghai Jiao Tong University, Shanghai, China
yyjess@sjtu.edu.cn

2 Keen Security Lab of Tencent, Shanghai, China

Abstract. Code protection schemes nowadays adopt language embed-
ding, a technique in which a customized language is built within a
general-purpose one, often referred to as the host language, to obfus-
cate original code through transforming it into a customized form with
which the analyst is not familiar. The transformed code is then inter-
preted by a so-called Embedded VM. This type of transformation does
increase the cost of code comprehending and maintaining, and introduces
extra runtime overhead.

In this paper, we conduct an in-depth study on embedded VM based
code protection and propose a de-obfuscation approach that aims to
recover the original code form. Our approach first pinpoints the inter-
pretation procedure and partitions handlers of the embedded VM, and
then employs a VM-state based handler translating, which represents the
VM-state-updated behaviors of handlers. Finally, the translated opera-
tions of each handler is optimized and transformed into host code. After
this process, we can obtain a clear and runtime efficient code represen-
tation. We build Nightingale, a binary translation tool, to fulfil this
de-obfuscation automatically with x86 binary executables. We test our
approach on the latest commercial code obfuscators, embedded domain-
specific languages and a set of home brewed obfuscation schemes. The
results demonstrate that this kind of obfuscated code can be simplified
with host language effectively.

Keywords: Code obfuscation · Virtual machine interpreter · Code pro-
tection

1 Introduction

Embedded languages are programming languages designed to be used from
within another program. Compared with its host language, an embedded lan-
guage is usually more flexible with clear and simple syntax. For instance, the

This work was partially supported by the Key Program of National Natural Science
Foundation of China (Grants No. U1636217), the Major Project of the National
Key Research Project (Grants No. 2016YFB0801200), and the Technology Project
of Shanghai Science and Technology Commission under Grants No. 15511103002.

c© Springer International Publishing AG 2017
P.Q. Nguyen and J. Zhou (Eds.): ISC 2017, LNCS 10599, pp. 387–404, 2017.
https://doi.org/10.1007/978-3-319-69659-1_21



388 X. Haijiang et al.

Windows operating system provides the WindowsScriptingHost API for pro-
grams to load and execute scripts written in WSH language. While this hybrid
programming style significantly extends the feature of the host language and
attains success with many concrete examples (e.g., C and Lua), it may also
increase the comprehension complexity and runtime overhead if the embedded
language is not familiar to code maintainer and user. For that reason more
and more code protection schemes use custom embedded language to impede
program analysis and reverse engineering efforts. This type of protection is espe-
cially popular with the malware developers, who aim to hide the behavior and
character of their program and shield away from the scanning of Anti-Virus soft-
ware. A prevailing implementation technique for those protection schemes is to
design a simple virtual machine. It transforms original code fragment (functions
or basic blocks) into bytecode corresponding to this VM, and then simulates it
in host language by interpreting the bytecode. Code diversity is also introduced
to generate different VMs to frustrate automatic analysis. As a result, it is usu-
ally more difficult to analyze and understand such protected code with analysis
techniques and tools of host languages.

Difficulties of comprehending embedded obfuscated code mainly comes from
comprehending the definition of embedded language and the embedded language
VM. In the VM obfuscated executable, instead of analyzing original program
code, it is the VM interpreter that requires to analyze. The analysis should
first recover the structure of the used VM (e.g., program counter variable, the
fetch/decode/execute loop, and instruction buffer) and then understand the
obfuscated code. Once the structure is well defined, the syntax and semantics of
the target instruction set can be derived with static and dynamic analyses. Pre-
vious studies on VM de-obfuscation [3,13,19,20], however, mainly concentrate
on comprehending obfuscated code with traditional program analysis and do not
consider the characteristic of it. For instance, they are trying to recover high-
level syntactic structure (e.g., Control Flow Graph) of the obfuscated code, or
employ heavyweight symbolic execution to recover the syntax and semantics of
VM bytecode. These analyses usually provide less help when understanding the
VM interpreter. As a result, although traditional binary code analysis techniques
are well-developed to handle commodity programs, they are sometimes too ideal
to comprehend obfuscated code. If the target of the analysis is the embedded
language rather than the n host language, a more basic problem is to conduct
an embedded language disassembling (or translating) to help understand it.

Methodology. To tackle this challenge, this paper presents a heuristic approach
to fulfil embedded language translation. It is profitable to translate the bytecode
from the embedded language to the host language. This not only helps compre-
hend the semantics of the code with simplicity, but also reduces the runtime
overhead because the execution in host language is generally more efficient than
the interpretive style of the embedded language. Our proposed approach relies
on the assumption that each handler of the embedded language’s VM interpreter
could be translated into a set of simple operations in host language, and our target
is to automated this inverse procedure and achieve binary code translation.



Nightingale: Translating Embedded VM Code in x86 Binary Executables 389

Main issues of this translation work include: (1) how to pinpoint the interpre-
tation and comprehend handlers, (2) how to translate one handler using the host
instructions, (3) how to simplify useless code inserted, and (4) how to replace
original obfuscated code. To pinpoint the interpretation procedure, we mainly
rely on the feature of how a part of the program is driven by data buffer to iden-
tify the VM. Then, a concept of VM-state, which is the core memory operated
by the VM, is used to slice code of handlers and build the concise description of
each handler. After that, the re-expressed instructions are further optimized to
generate a simpler alternative function of the obfuscated code stub. Finally, we
use dynamic instrumentation to patch the VM interpreter and replace it with
our translated code.

Two properties of embedded VM based obfuscation are leveraged to sup-
port our translation. First, most of the embedded bytecode is a transformation
of existing program code. Thus it is feasible to re-express it with the original
instruction set. This often becomes an important prerequisite for effective de-
obfuscation. Second, to communicate with host languages, the embedded code
generally uses data structures conforming to host language to pass parameters
to and from the host program to the interpreter. For instance, an x86 assembly
function will still use stack to pass the parameters even if it is obfuscated.

The core insight of our work is to leverage an abstract VM-state to rep-
resent the heavily obfuscated operations. Abstractly, the VM-state is the set of
intermediate buffer of the VM interpreter, which could be defined through a
program analysis of the interpretation. Then the behavior of the VM interpreter
is defined by how the VM-state is updated. Through this way different behaviors
of various VM interpreters can be expressed in a unified way.

We design and implement an embedded language translator, Nightingale,
to execute automated obfuscated code extraction and translation. Nightingale
mainly makes use of dynamic analysis to employ the obfuscated code extraction.
It monitors certain execution that contains a VM interpretation and extracts
handlers of the interpreter. When the handler is extracted, an offline analysis
is executed to translate and simplify the corresponding embedded code. Finally,
the simplified code in host language is dynamically inserted into the program to
replace the original obfuscated one.

Evaluation. To evaluate the effectiveness of our approach, we conduct a series
of empirical studies on several code obfuscators. To the best of our knowledge,
most previous studies on code de-obfuscation only focus on two mainstream
obfuscator manufacturers. While those code obfuscators covers a large portion
of obfuscated programs, there are still many custom obfuscators used by different
software products in the wild. Our evaluation also considers them and conducts
an in-depth analysis on some novel obfuscation measures adopted. In detail, we
collect five obfuscated samples from online Capture The Flag (CTF) contests as
well as our home brewed sample obfuscated by the popular VMProtect obfusca-
tor as one of the most famous obfuscators. We then use Nightingale to analyze
these samples and translate their embedded code stubs. While other works try



390 X. Haijiang et al.

to compare the similarity of recovered code structure with the original one, our
validation is simple: we only observe if our rewritten code is able to fulfil the
same transformation as the obfuscated one for multiple inputs. If this input-
output relationship preserves, it is believed that the translation works. Besides,
analysts will get a more comprehensible expression of the program.

Contributions. This paper makes the following contributions:

– We propose an obfuscated code translating approach for code comprehen-
sion. Our translating approach adopts a embedded language disassembling
methodology and simplifies the obfuscated code. It not only helps under-
standing the obfuscated code but also improves the execution efficiency to
some extent.

– We propose a VM-state analysis to deal with different VM implementations
and express the behavior of handlers based on this VM-state. The VM-
state based behavior expression is helpful when performing binary translating
because it is defined using host language, and is able to be integrated into
host program as a patch of the VM code.

– We implement Nightingale, a binary translating tool to fulfil the task of
code de-obfuscation. Our evaluation shows different VM implementations can
be analyzed and translated by Nightingale with a unified analysis style.

2 Preliminaries

2.1 Basic Concept

Figure 1 depicts a concrete example of VM code embedding. The non-obfuscated
program, a Windows x86 or x64 executable, is generated with normal compila-
tion process and the layout of the executable follows standard Windows PE file
format. After a VM-based code obfuscation (i.e., a code transformation process),
part of the original code is wiped and replaced as control flow transitions to
lately inserted code section defined in this paper as a VM stub. In Fig. 1, original
code of func A and func B is replaced as vm func A and vm func B. Notice that
vm func A and vm func B are not typical binary code functions. Instead, they
are composed of the header in the original Code section and a series of bytecode
placed at the VM section. Then the VM core is responsible for executing the
bytecode in the VM section. A typical header (control flow transition) of VM
stub can be a simple branch instruction in code section:

00401000|push ebp
00401001|mov ebp, esp
00401003|sub esp, 0x8
00401006|push 0x4020f4
0040100b|jmp 0x4a4a97



Nightingale: Translating Embedded VM Code in x86 Binary Executables 391

PE Header

Sections

Code

Imports

Resources

Code

func_A()

func_B()

Imports

kernel32.dll

Code

vm_func_A()

vm_func_B()

Imports
kernel32.dll

VM Section
VM Core

New EntryPoint

vm_func_A()

vm_func_B()

VM Core

dispatcher

Virtual call

Poly-decrypt 
function

main vm_func

... ...

Original
VM Obfuscated

Fig. 1. An instance of VM code embedding

The last jmp instruction in this example leads the control flow to the entry
point of the VM stub in VM sections, which consists of mainly a VM bytecode
buffer and a VM interpreter.

To fulfil the same functionality as the original code, the obfuscator will gener-
ate a segment of VM bytecode through analyzing and transforming the original
instructions. For instance, if there exists an add instruction in original code and
the code interpreter also contains an instruction that fulfils addition operation,
the obfuscator will then generate a corresponding VM bytecode instruction. The
VM bytecode buffer is basically the transformed results of original code with the
form of a customized instruction set architecture (ISA). However, not all of the
original instructions can be replaced by an alternative VM bytecode. Particu-
lar instruction in host language may be complex and the obfuscator may use a
set of alternative VM bytecode instructions to replace it. In this manner, the
embedded VM code executes within the host language execution environment
and always tries to keep the same semantics to prove the reliability.

In the scenario of VM based code obfuscation, the VM interpreter is generally
the implementation of a lightweight code interpreter written in host language.
Different VMs adopt different designs of ISA and corresponding bytecode han-
dlers. Some VMs are stack machines while some are register machines. However,
both implementations follow the common design principle of code interpreter
and each consists of basic components such as a bytecode decoder, an execution
scheduler, and numerous bytecode handlers, which are core components that
determine the ISA of the VM and fulfil the main functionality.



392 X. Haijiang et al.

2.2 Assumptions

One assumption in this paper is that the VM used for code obfuscation is a sim-
ple interpreter compared with those heavyweight interpreters (e.g., interpreters
of Ruby, Lua, and Python). Moreover, we assume that the protected code are
simple data transformations that mainly contain plain instructions. This is rea-
sonable because most obfuscators, according to our observation, only deal with
those plain instructions. Our assumption is base on the observation of common
commercial obfuscators such as VMProtect and ExeCryptor. The obfuscation is
often employed through using SDKs of those obfuscators to transform only part
of their code. Otherwise, the obfuscation process may fail or the generated exe-
cutable may not able to work properly. This indicates that these automated VM
obfuscators only deal with relatively simple instructions to prove the stability.

Another important feature is that most obfuscators would not recursively
obfuscate invoked functions in the range of protected code. That is, if the pro-
tected code contains a function invoking, obfuscators generally do not obfuscate
this invoked function. Instead, they just replace the invoking instruction (call
or jmp) with a vague stub that does not obviously expose the target function’s
address.

For commercial VM obfuscators, although we do not know their accurate
work mechanisms, we can send a home brewed sample to them and obtain the
obfuscated version (these obfuscators provides trial versions). This also helps
understand the used bytecode instructions and handlers.

3 VM Code Translating

3.1 Overview

In this paper we aim at translating the embedded VM code, which is mainly
generated by automated code obfuscator, into the form of host language of the
program. As the embedded code can be seen as an alternative transformation P ′

that replaces the original transformation P . The target is to recover the origi-
nal transformation P as much as possible. However, state-of-the-art obfuscators
can add various layers of transformations and heavily complicate the process of
reverse engineering the semantics of binary code. In most cases it is unpractical
to obtain a complete understanding of the underlying logic of a program. Thus
we do not pursuit a perfect recovery because this can be seen as a form of decom-
pilation and it is not expected to have a perfect solution to the problem. Our
solution is instead to present a generic and practical translation scheme that
reveals the state transition of VM code. Concentrating on VM code restricts
the scope of the analysis, and helps analyst focus on collect high-level informa-
tion and identify interesting parts of the obfuscated code. Particularly, in this
paper we do not consider the unpacking and anti-analysis code issues. We mainly
focus on how to comprehend the structure of embedded VM and how to translate
embedded VM bytecode into host language expression.



Nightingale: Translating Embedded VM Code in x86 Binary Executables 393

Binary File Execution 
Trace

VM-State

VM
handlers

Host Language

Dynamic 
Trace Clustering

VM
State

Extraction

Core
Instructions

Identification

Handler
Translation

Core
Instructions

Fig. 2. VM code translating process

Figure 2 depict the entire translating process, which consists of five phases.
At the very beginning, the binary code executable is analyzed to first collect
execution trace and pinpoint the interpretation procedure. Then, the interpreta-
tion procedure is partitioned into different smaller procedures corresponding to
VM bytecode handlers. The third phase then extracts and composes a VM-state
through synthesizing each handler’s behavior. After acquiring the definition of
the VM-state, the operation of each handler can be expressed in a new form of
host language instructions, and this new representation could be further simpli-
fied using traditional program optimization techniques. Finally, to complete the
translation, the VM code is replaced by those simplified code through a dynamic
binary code instrumentation. In the following, we introduce the details of each
phase.

3.2 Interpretation Pinpointing

We propose a handler partition approach, which relies on the analysis of indi-
rected branch semantics. Embedded VM code in host program often executes
with a relatively lightweight interpreter, and pinpointing its interpretation
process is crucial for the translating. Some studies assume that the VM code
and interpreter are placed into a separated section of the executable. Although
this corresponds to most commercial VM obfuscators such as VMProtect and
Themida, it is not always true for those customized VM obfuscators. Some VM
interpreters are embedded into the program during the development stage, hence
are located within the same code section as the host code. In this situation, a
more generic pinpointing approach is required.

We propose a pinpointing approach based on the feature that the execution
of the interpreter is driven by the VM code placed beforehand. A VM inter-
preter often contains a code dispatching mechanism that responds for choos-
ing the next executing instruction after the interpretation of current bytecode
instruction is finished. This code dispatching mechanism can be implemented
with a decode-and-dispatch style or with a threaded interpretation style [14]. For
the decode-and-dispatch interpreter, there exists one particular indirect branch
instructions (e.g., call eax) that transits the control flow to different handlers.



394 X. Haijiang et al.

Dispatch table

Decode and dispatch Threaded interpretation

Fig. 3. Two types of interpretation

For the threaded interpretation, the indirect branch instructions may be con-
tained in different handlers (see Fig. 3). However, both kinds of indirect branch
instructions, as we called dispatching instructions, are driven by the VM code.
Hence for both implementations, we first collect all indirect branch instructions
in the execution trace. Then how those concrete control flow transitions are
influenced by the input data (from external input or be directly coded in the
program) are extracted through a data dependency analysis. The data depen-
dency analysis mainly calculates which part of the input data determines the
final indirect branching with a basic data flow analysis against the execution
trace. The input data that influences the branching is labeled as the data source.
After the analysis, these indirect branch instructions are clustered according to
the data source that influence them. The clustering is based on the metric of
data source’s distance. A basic K-means clustering is adopted here, intending to
group those instructions that are influenced by data source with closed distance.
According to our observation, the VM code is generally placed in a continuous
buffer in data section, or hard coded in code section. If instructions are driven
by similar data that is from a small region in memory, it is very possible that
the data represents the VM code and the clustered instructions indicate the
existence of the interpretation. Another observation is that the embedded VM
code has generally been placed during the program generation stage. Thus the
buffer of VM bytecode should be placed before the execution of the program. We
leverage this property to classify VM bytecode interpreter and the state machine
of network protocol, which possesses similar data-driven behavior but the data
source is often determined during the execution (i.e., received from the network).

After pinpointing the code dispatching part of the interpretation, the next
step is to partition the entire execution trace into individual operation of



Nightingale: Translating Embedded VM Code in x86 Binary Executables 395

bytecode instruction handler. We directly use the code dispatching part as the
splitter to partition the execution trace, and consider each partitioned segment
as a handler. Notice that a handler is not necessarily implemented as a function.
Thus a partitioning with the granularity of assembly function is not feasible for
this application.

3.3 VM-State Analysis

The key insight of our approach is to recover the format of VM-state, which
contains the virtual context of the VM during the interpretation. In general, a
VM-state is a set of memory buffer and registers that represents the context of
the current VM execution and is maintained by the VM. However, because our
analyzed VM is embedded into a host program and the VM itself is implemented
using the host language, its VM-state is also expressed using the host memory
and registers and is not easily distinguished from the host program’s context.
Moreover, we expect that the VM-state can still be defined using host language
so that in the later translating we can utilize this expression to rewriting the
interpretation. To this end, our VM-state analysis is a reverse engineering effort
to recover basic format of the VM-state. Since we do not know the virtual ISA
beforehand, it is infeasible to define a fixed abstraction of this state beforehand.
For instance, if the VM is a stack machine, it often uses a memory buffer to sim-
ulate its own virtual stack and manages its own stack push and pop operations.
However, if the VM is a register machine, the abstraction may vary significantly.
Hence, our analysis only define a VM as the program that manipulates a mem-
ory buffer with relative pointers. Take a virtual push operation as an example,
our analysis gives the result of a memory write operation only. In this way, we
aim to express different VMs in a unified style.

The VM-state reverse engineering starts from analyzing memory and regis-
ters updating of each handler in a trace. Now that the aforementioned handler
partitioning has already defined the range of each handler, in this phase we
concern about how each handler update memory and registers and among the
updated content, which part is the used by the following operations. This can
be done by a simple data citation analysis: the memory and registers updat-
ing of one handler is first recorded and then the following handlers’ operations
are checked to see which part of those memory buffers and registers is cited in
at least one following handler’s operation. If the particular memory buffer or
register is cited, it is labeled as a critical context, otherwise it is labeled as a
forgiving context. Then we analyze every handler to acquire each one’s critical
context, and merge them to generate the VM-state. In addition, how each han-
dler manipulates the element in the VM-state is also recorded so that we can
define data member of the VM-state with a finer granularity. After this phase
the VM-state is extracted from the host program context and the handlers are
expected to be translated into host language.



396 X. Haijiang et al.

3.4 Handler Translating

Handler translating is the core phase of the entire VM code translating process. It
translates variously implemented handlers into a unified form based on the defin-
ition of VM-state. That is, one handler’s operation is translated as an expression
consisted of basic calculation and VM-state elements. For instance, if a handler
originally fulfils an add operation on two abstract registers, then the translation
results may be:

VM-state.buffer[0:4] =
VM-state.buffer[0:4] + VM-state.buffer[4:8]

As the operation of one handler is represented as the operation on the VM-
state, it provides a clear description of the handler’s behavior with the help of
the VM-state. Moreover, it tackles the issue of implementation diversity issue.
Even the VM obfuscator adopts code diversity technique to change same handler
in different implementations, our analysis is still able to recover the semantics
with the VM-state representation.

The detailed handler translating starts from a value-based backward code
slicing [3] that resects irrelevant instructions in the handler. It keeps those
instructions related to VM-state updating in the handler, which can be employed
by a standard slicing approach. Then the remained instructions are transformed
into a expression. This expression is generated according to the input and the
output of the handler, and illustrates the semantics of the input and the output.
Because we can define the input and the output using VM-state, the expression
is obviously consists of the relevant VM-state elements.

3.5 Code Simplification

The VM-state based expression of handler may still be complex even if the
code slicing removes irrelevant instructions. The reasons for this complexity
include the VM obfuscator’s implementation is not efficient, or the VM obfus-
cator intentionally uses a combination of operations to fulfil a simple operation.
For instance, some VM obfuscators would use NOR and NAND operations only
to emulate every arithmetic operations. To improve the execution efficiency of
our translated code, a further code simplification is required.

Our code simplification relies on state-of-the-art code compilation tools to
perform code optimization. We first translate every handler in the concrete exe-
cution trace to output a VM-state operation sequence. This VM-state operation
sequence represents the specific transformation executed by the VM interpre-
tation. Then we rewrite this sequence as a single function using commodity
program language so that it can be compiled by state-of-the-art code compila-
tion tools. In our work we use C programming language to rewrite this sequence
and use LLVM as the optimization tool. We can compile this single function as
a static or a dynamic lib and it could be linked latterly.



Nightingale: Translating Embedded VM Code in x86 Binary Executables 397

3.6 Dynamic Patching

The final step of our translating is to replace the embedded code with a more
clear and efficient form. As the embedded code has already been translated
and encapsulated into a static or dynamic lib. We can link this lib and use the
alternative function to replace the VM stub.

Our dynamic patching is implemented through dynamic code instrumenta-
tion. We use popular code instrumentation tools such as Intel’s PIN to rewrite
the binary code. For a VM stub, we instrument an alternative stub before its
entry point to replace its functionality. The control flow is then directed to the
new translated function implemented in our lib. And after the execution of this
function as a replacement, the alternative stub directly leads the control flow to
the invoker of VM stub.

Notice that our translated function is generated by a dynamic analysis phase,
which means it may suffer from code coverage problem. The translated function
may only able to perform a partial transformation of the original one. However,
our observation indicates that most VM stubs are simple transformations with
few or no branches. This guarantees our patching works most of the time.

4 Empirical Evaluation

We implement Nightingale, a binary translation tool, to fulfil this de-
obfuscation automatically with x86 and x64 binary executables. Nightingale
consists of an execution trace recording module, an offline program analysis mod-
ule, and a code patching module. The execution trace recording module and the
code patching module are based on Intel’s PIN instrumentation framework (900+
LOC) [8], and the offline program analysis module is written in Python (2900+
LOC). In this section we report our empirical study using Nightingale on five
different obfuscators including the state-of-the-art VM obfuscator–VMProtect
3.0, and four VM obfuscators from different CTF contests that introduce spe-
cial code obfuscation techniques (all of the samples from CTF contests can be
found online).

4.1 Analysis Results

The chosen samples cover mainstream implementation styles of VM obfusca-
tion and the diversity of each sample is significant for analysis. Foodie-VM
is a simple VM from 0CTF 2015 CTF contest. It is implemented in C and
adopts a standard decode-and-dispatch model. BCTF-VM is a C++ imple-
mented VM adopting standard decode-and-dispatch interpretation model. It
contains basic arithmetic operations (add, sub, mul, and div), logic operations
(xor, and), and virtual stack operations (push, pop). Paris-VM is an obfuscation
sample from the PlaidCTF 2014 CTF contest, which utilizes exception-driven
and data-driven implicit control flow manipulating to hide the execution path.
DonnBeach-VM is an obfuscation sample from the Hack.lu 2012 CTF contest,
which utilizes Intel’s MMX instruction set to fulfil a simple AES encryption (2
rounds). The overall experiment results are listed in Table 1.



398 X. Haijiang et al.

Table 1. Features of different VMs and the analysis results

VMs Type Host language Handlers VM-state

VMProtect Threaded interpretation C++ 138 53 units, 156 bytes

BCTF-VM Decode-and-dispatch C++ 19 59 units, 448 bytes

Foodie-VM Decode-and-dispatch C 6 104 units, 260 bytes

Paris-VM Data-control C++ 20 7 units, 440 bytes

DonnBeach-VM Decode-and-dispatch C 16 8 units, 64 bytes

VMProtect. VMProtect adopts a threaded interpretation style rather than the
classic decode-and-dispatch style used in previous versions. Each handler of its
interpreter contains a decode stub at the end of its procedure and calculates next
handler in situ, which increases the difficulty of handler partitioning. However,
using our indirect branch instruction clustering, Nightingale still successfully
extracts the handler related decoding and dispatching instructions and partitions
the handlers from the entire execution trace.

BCTF-VM. For BCTF-VM, because of the C++ implementation style, static
program analysis does not recognize the caller and callee relationship of dis-
patching procedure. Our approach solves this issue through dynamic analysis
and successfully recognizes all handlers in the execution trace. The recovered
VM-state contains 59 memory units and because this VM does not insert any
interfering instructions, the backward slicing only resect a few instructions. We
can pinpoint handler with method proposed in Sect. 3.2.

Foodie-VM. Handlers of Foodie-VM generally include core functionality and a
decode procedure to determine next handler. The extracted VM-state include
104 memory units, and with value-based backward slicing and handler trans-
lating, the result is partially showed in Fig. 6. We then compare this recovered
result with the original source code of the VM and find it corresponds to original
design well.

DonnBeach-VM. The analysis of DonnBeach-VM finds the dispatcher–an obvi-
ous indirect branch instruction at 0x40522F driven by buffer 0x405000, and
handlers are easily partitioned due to its decode-and-dispatch interpretation
style. However, the VM-state of this obfuscator is hard to be analyzed due
to the MMX instructions such as palignr mmx7, mmx7, 0x7. To handle this
situation we add an extra MMX instruction analysis to Nightingale so that
it could parse these handlers. As the handlers are parsed, the VM-state of this
obfuscator is finally defined as an 8× 8 byte array, which reflects the eight MMX
registers (each register is 128-bit). Also notice that in the host language (x86
Assembly) there is no corresponding instruction for those SIMD operations, e.g.,
an 128-bit xor operation, we manually add some template functions to fulfil such
operations.



Nightingale: Translating Embedded VM Code in x86 Binary Executables 399

Paris-VM. Paris-VM is the most special sample in our analysis. It uses three
continuous memory buffers plus four independent bytes to store the VM-state.
Instead of using either threaded interpretation or decode-and-dispatch interpre-
tation, this VM executes every handler in each iteration. Only one handler is
effective in each iteration and this is determined by the current VM bytecode.
Each handler first executes its own functionality and then performs a calculation
according to the VM bytecode. Only if the result corresponds to particular han-
dler, the updating of VM-state could be preserved. Otherwise, state updating of
those ineffective handlers is restored from a mirror VM-state maintained by the
VM.

4.2 Case Studies

VMProtect 3.0. In our experiment we use VMProtect 3.0, the latest version of
VMProtect software (until 2015.08), to protect a sample program. VMProtect
inserts many interfering instructions in the handler to obscure the semantics
from being comprehended. Using our VM-state analysis proposed in Sect. 3.3,
we obtain a VM-state containing 53 units and according to relevant operations of
those 53 units, crucial instructions in this handler can be determined. After the
backward slicing with the information collected we obtain optimized handlers
and the simplification effect is shown in Fig. 4

Fig. 4. Handler simplification of VMP handlers

We use one of the handlers to illustrate our analysis. The original handler ful-
fils the functionality of poping two data elements from the virtual stack (VMPro-
tect uses ebp to store the virtual stack’s header pointer). Then those two ele-
ments are stored into eax and ecx register respectively. Finally a calculation



400 X. Haijiang et al.

((!eax) & (!ecx)), i.e., a NOR logic computation is executed and the results
of calculation and flag register modification are pushed into the virtual VM
stack. In addition, the decode procedure, which fetches a 4-byte VM code and
uses ret instruction to transit to next handler, is attached at the end.

Then we execute the handler translating on this result to obtain the trans-
lated code in Fig. 5. It shows the top 10 handlers with the most simplification
degree. The translated code is expressed in C and is able to be compiled (the
decode part of VM-state is omitted). We then integrated the entire translated
code of the execution trace to replace the original VM stub. The execution dis-
plays that our code updates the status of the program with the same semantics.

1 ...
2

3 void handler_NOR()
4 {
5 /* Pop 2 data from VM Stack */
6 // 0x44ae3c: mov eax, dword ptr [ebp];
7 (eax.r32[0]) = vm_state[22];
8 // 0x44ae47: mov ecx, dword ptr [ebp+0x4]
9 (ecx.r32[0]) = vm_state[24];

10

11 /* NOR */
12 // 0x44ae51: not eax
13 (eax.r32[0]) = (~(eax.r32[0])) & 0xffffffff;
14 // 0x44ae55: not ecx
15 (ecx.r32[0]) = (~(ecx.r32[0])) & 0xffffffff;
16 // 0x44ae5d: and eax, ecx
17 (eax.r32[0]) = (eax.r32[0]) & (ecx.r32[0]);
18

19 /* Push Result to VM Stack */
20 //44ae5f: mov dword ptr [ebp+0x4], eax
21 vm_state[24] = (eax.r32[0]);
22

23 // Push Flag to VM Stack
24 // 0x44ae6b: pushfd
25 (esp.r32[0]) = (esp.r32[0]) - 0x4;
26 // 0x44ae76: pop dword ptr [ebp]
27 *(unsigned int *)(esp.r32[0]) = eflags.r32[0];
28 vm_state[22] = *(unsigned int *)((esp.r32[0]));
29 (esp.r32[0]) = (esp.r32[0]) + 0x4;
30

31 /* Fetch next handler offset */
32 // 0x44ae8e: mov eax, dword ptr [esi]
33 (eax.r32[0]) = (*(unsigned int *)((esi.r32[0])));
34

35 /* Offset Decryption
36 Calculating next Handler address */
37 ...
38 }

Fig. 5. A translated handler of VMProtect obfuscated code

Foodie-VM. Foodie-VM is a VM that simulates an online shellcode battle
between two players. The authors have released the source code so we can verify
the de-obfuscation result, especially the recovered VM-state with the original



Nightingale: Translating Embedded VM Code in x86 Binary Executables 401

1 // MOVri source code
2 int32_t vm(Ins *code, uint32_t code_size, char *input)
3 {
4 ...
5 for (i = 0; i < code_size && executing == VM_EXECUTING; ++i)
6 {
7 Ins ins = read_mem(ctx->memory, ctx->pc);
8 Opcode op = get_opcode(ins);
9 ctx->pc++;

10 switch(op)
11 {
12 ...
13 case MOVri:
14 reg0 = get_reg_idx(ins, 0);
15 if (reg0 == ERR_REG_IDX)
16 executing = VM_STOP;
17 else
18 ctx->reg[reg0] = (Reg)get_imm(ins);
19 break;
20 ...
21 }
22 }
23 ...
24 }

(a) Source code of Foodie-VM

1 // Result of Handler Translating
2 void MOVri()
3 {
4 ...
5 // Fetch Immediate from VM bytecode
6 eax.r32[0] = (*(unsigned short *)((ebp.r32[0]) + 0x8));
7 eax.r32[0] = (eax.r32[0]) & 0x3ff;
8

9 // Get VM Context address
10 ecx.r32[0] = vm_state[11];
11

12 // Update VM Register with Immediate
13 vm_state[18] = (eax.r16[0]);
14 ...
15 // Update VM PC
16 edx.r16[0] = vm_state[17];
17 edx.r16[0] = (edx.r16[0]) + 0x1;
18 vm_state[17] = (edx.r16[0]);
19 ...
20 }

(b) Translated handler of MOVri operation

Fig. 6. Comparison between original code and translated handler of Foodie-VM

structure. We got 104 memory units from the VM-State Analysis. After value-
based backward slicing and handler Translating, all of the vm bytecode handlers
were successfully translated. Figure 6 lists one bytecode named MOVri, which
fulfils the function of moving one immediate into VM register that specified in
the operand component of the bytecode (we only reserve the key part of the
source code and translating result).



402 X. Haijiang et al.

In the result of handler translating, new code fetches 4 bytes whose memory
address is specified in ebp.r32[0] (line 6 of Fig. 6b) and stores the fetched data
to vm state[18] (line 13 of Fig. 6b). The corresponding operations in source code
are listed at line 19 of Fig. 6a, which indicate the assignment from immediate
operand of VM bytecode to the VM register reg0. Finally, vm state[17] increases
by one (line 16–18 in Fig. 6b), which corresponds to ctx->pc++ in source code.
From the result analysts could infer that vm state[17] is the VM’s virtual PC
after observing all of the handlers since most of handlers have to update the
VM’s virtual PC during execution. Thus, our translated results will be helpful
to accelerate the process of reverse engineering.

5 Related Work

Code obfuscation is an active and practical field of code protection. Although
the theoretic proof of impossibility of perfect obfuscation has been provided by
Barak et al. [1] in 2012. There are still numerous code obfuscation schemes and
most of them are ad hoc implemented. These schemes can be classified into two
categories. Schemes in the first category mainly work with source code only,
and cover many programming languages include C, C++, Java and C#. Among
them, the Obfuscator-LLVM [7] (OLLVM) project is a recently emerged obfus-
cation scheme that takes advantage of the feature of LLVM-IR to help obfuscate.
It is initiated in June 2010 by the information security group of the University
of Applied Sciences and Arts Western Switzerland of Yverdon-les-Bains (HEIG-
VD). As it works at the Intermediate Representation (IR) level, Obfuscator-
LLVM compatible with all programming languages and target platforms cur-
rently supported by LLVM. Thus it is widely deployed by many applications on
different ISAs.

The second category of code obfuscation schemes could manipulate binary
code and are frequently used by commercial software and malware. Two famous
obfuscation software providers, VMProtect Software [17] and Oreans Technolo-
gies [9], release a vast majority of publicly known obfuscators such as VMProtect,
Themida, WinLicense, and Code Virtualizer). Other binary code obfuscators
such EXEcryptor [16] and SafeEngine [12] may even be more complex, but are
not so popular and less used mainly due to their compatibility issues.

To the best of our knowledeg, the work of Sharif et al. [13] proposed the
first generic de-obfuscation approach against VM based code obfuscation. They
mainly relies on abstract variable analysis and binding to recognize VPC (vir-
tual pc of the emulator) and re-construct the CFG. Their work provides a clear
definition of the VM analyzed. However, their analysis relies on the assumption
of certain VM structure and only focuses on recovering structure (CFG) of the
VM bytecode. This is less meaningful for VM based code obfuscation because
a VM stub is generally transformed from a relatively simple function or basic
block. It is the bytecode’s definition rather than the structure that gives the
information of the obfuscation code. Yadegari et al. [20] also propose a generic
de-obfuscation approach. The advantage of their proposed approach is that it



Nightingale: Translating Embedded VM Code in x86 Binary Executables 403

does not make any assumptions about the nature of the obfuscation scheme, but
instead using semantics-preserving program transformations to simplify away
obfuscation code. Although the proposed code simplification technique is effec-
tive, the main target of their approach is still the CFG and the approach does
not provide any concrete bytecode definition.

Coogan et al. [3] proposed a semantics-based approach to de-obfuscate com-
mon commercial obfuscators. However they make a strong assumption that
requires the involving of system calls to help analyzing. This assumption is not
valid for many VM stubs and thus their approach is not universal. Rolf Rolles
gives a well-defined de-obfuscation procedure on unpacking virtualization obfus-
cators in [10] and proposes a semantics-based methods in [11]. However these
work lacks details on handling many obfuscator variants and do not scale.

Specific de-obfuscation tools corresponding to particular version of obfusca-
tors are frequently developed. VMSweeper is a plugin of popular Ollydbg debug-
ger that helps decompile VM code of Code Virtualizer (Oreans Technology) and
VMProtect (VMProtect Software). Oreans UnVirtualizer is also an Ollydbg plu-
gin that focus on analyzing Code Virtualizer. In response to LLVM-IR based
obfuscation, de-obfuscation technique [5] against OLLVM is also proposed. This
technique utilize Miasm [2], a Python open source reverse engineering framework,
to deal with specific cases of Control Flow Flattening, Bogus Control Flow, and
Instructions Substitution. Besides, there are works concentrating on particular
aspects of de-obfuscation. Using symbolic execution to help de-obfuscate VM
stub is a promising strategy and many studies have been proposed [6,15,19].
Other de-obfuscation techniques include using probable-plaintext attacks to de-
obfuscate malware [18] and simplifying obfuscated machine Code [4].

For famous code obfuscator, corresponding analysis tools are able to deal
with fixed pattern and recover the obfuscated code with necessary manual effort.
However, as the obfuscators change or evolve, these tools are immediately not
available. This becomes an endless arms race and the designers of VM obfuscator
have the advantage of adopting “security by obscurity” strategy. Moreover, for
those obfuscators in the wild, there is no known effective de-obfuscation tool
to analyze them. As a result, our automated and universal analysis is more
profitable.

6 Conclusion

In this paper we study the VM based obfuscation and propose a binary transla-
tion approach to simplify the embedded VM stub in a host program. Our app-
roach differs from most recent de-obfuscation schemes for its VM-state analysis,
which is a universal analysis against various VM implementations. Based on the
VM-state a clear expression of VM handler is generated and translated into host
language. This translated code can replace the VM stub and fulfil same func-
tionality, and is easily to understand and more efficient. Experiments on five
different VMs illustrate the feasibility of our approach.



404 X. Haijiang et al.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 1–6 (2012)

2. CEA IT Security. Miasm: Reverse engineering framework in Python. https://
github.com/cea-sec/miasm

3. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS) (2011)

4. COSEINC. COSEINC OptiCode: Deobfuscate Machine Code. http://opticode.
coseinc.com/

5. Gabriel, F.: Deobfuscation: recovering an OLLVM-protected program. http://blog.
quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html

6. Guillot, Y., Gazet, A.: Automatic binary deobfuscation. J. Comput. Virol. 6(3),
261–276 (2010)

7. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM - software
protection for the masses. In: Proceedings of the IEEE/ACM 1st International
Workshop on Software Protection (SPRO) (2015)

8. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation (2005)

9. Oreans Inc. Oreans Technology: Software Security Defined. http://www.oreans.
com/

10. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Workshop on Offensive Technologies (WOOT) (2009)

11. Rolles, R.: The case for semantics-based methods in reverse engineering. In:
RECON (2012)

12. Safengine.com. Safengine Protector. http://safengine.com/
13. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware

emulators. In: Proceedings of the 30th IEEE Symposium on Security and Privacy
(SP). IEEE (2009)

14. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and
Processes. Elsevier, Amsterdam (2005)

15. Souchet, A.: Obfuscation, breaking kryptonite’s: a static analysis app-
roach relying on symbolic execution. http://doar-e.github.io/blog/2013/09/16/
breaking-kryptonites-obfuscation-with-symbolic-execution/

16. StrongBit Technology. EXECryptor - bulletproof software protection. http://www.
strongbit.com/execryptor.asp

17. VMProtect Inc. VMProtect Software Protection. http://vmpsoft.com/
18. Wressnegger, C., Boldewin, F., Rieck, K.: Deobfuscating embedded malware using

probable-plaintext attacks. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID
2013. LNCS, vol. 8145, pp. 164–183. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41284-4 9

19. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS)
(2015)

20. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: Proceedings of the 36th IEEE
Symposium on Security and Privacy (SP) (2015)

https://github.com/cea-sec/miasm
https://github.com/cea-sec/miasm
http://opticode.coseinc.com/
http://opticode.coseinc.com/
http://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
http://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
http://www.oreans.com/
http://www.oreans.com/
http://safengine.com/
http://doar-e.github.io/blog/2013/09/16/breaking-kryptonites-obfuscation-with-symbolic-execution/
http://doar-e.github.io/blog/2013/09/16/breaking-kryptonites-obfuscation-with-symbolic-execution/
http://www.strongbit.com/execryptor.asp
http://www.strongbit.com/execryptor.asp
http://vmpsoft.com/
http://dx.doi.org/10.1007/978-3-642-41284-4_9
http://dx.doi.org/10.1007/978-3-642-41284-4_9

	Nightingale: Translating Embedded VM Code in x86 Binary Executables
	1 Introduction
	2 Preliminaries
	2.1 Basic Concept
	2.2 Assumptions

	3 VM Code Translating
	3.1 Overview
	3.2 Interpretation Pinpointing
	3.3 VM-State Analysis
	3.4 Handler Translating
	3.5 Code Simplification
	3.6 Dynamic Patching

	4 Empirical Evaluation
	4.1 Analysis Results
	4.2 Case Studies

	5 Related Work
	6 Conclusion
	References


