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The massive growth of smart mobile devices has attracted numerous apps to embed third-party in-app 

payment, which involves more sophisticated interactions between multiple participants compared to tra- 

ditional payments. Therefore, such payment is error prone and could be exploited easily, leading to seri- 

ous financial deceptions. To investigate current third-party mobile payment ecosystem and find potential 

security threats, we conduct an in-depth analysis against China–world’s largest mobile payment market. 

We study four mainstream third-party mobile payment cashiers, and conclude unified process models. 

We also summarize the security rules that must be regulated by cashiers and merchants and illustrate 

four types of attacks if violating these rules. Besides, we also detect seven cases of security rule violation 

on both Android and iOS platform. Our detection result shows that hundreds of popular apps violate at 

least one security rule, and hence face with various security risks, allowing attackers to consume com- 

modities or services without purchasing them or deceiving others to pay for them. Our further investiga- 

tion reveals that cashiers as well as merchants should be responsible for those vulnerable cases. We also 

performed proof-of-concept attacks in real world, reported these issues to all involved parties and helped 

them fix the vulnerabilities. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The past few years has witnessed the extraordinary develop-

ent in mobile payment. The significant growth of smartphone

romotes the usage of third-party mobile payment services in

obile apps. Compared to transaction processes with traditional

ayment channels (e.g., via credit card), transactions with third-

arty in-app payment are settled within mobile app conveniently.

sers can pay their bills directly without switching to another

pp or web browser. To help apps use their mobile payment ser-

ices, third-party cashiers are willing to provide such functional-

ty for popular Android and iOS apps to fulfill in-app payment.

he cashiers provide third-party payment SDKs (TP-SDKs) to mo-

ile app developers, leading a straightforward integration of in-app

obile payment. As a result, more and more apps are using third-

arty in-app payment as their major payment channel. 

Nonetheless, implementing a secure in-app payment is not

asy. In-app payment is still in its incipient stage and is especially

rror-prone due to many issues such as the misunderstanding of

pp developers, the improperly designed services, and the ambigu-
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us documents or code samples released by cashiers. In addition,

 process of third-party in-app payment involves more participants

user, cashier, and merchant), and the interaction steps compared

o traditional payment processes is more sophisticated. Therefore,

he potential attack surfaces for third-party in-app payment are

uch wider. 

Previous studies on payment security [1–5] mainly focus on the

ecurity of e-commerce web applications other than mobile apps.

lthough numerous security flaws of e-commerce web applications

ntegrating services of third-party cashiers had been revealed, on

obile platform the trust boundaries are redefined and the prob-

ems should be re-studied. The workflow of an entire in-app pay-

ent transaction is much more complex and the security analysis

f e-commerce in web applications is unable to cover some new

teps. Particularly, since the introduced mobile client plays an im-

ortant role in this multi-party model, it is inadequate to directly

mploy traditional flaw detection of web applications on mobile

pps. Client apps are generally considered untrustful since all the

ata handled by apps can be manipulated by an attacker with a

ooted Android phone or a jailbroken iOS device, Hence, a compre-

ensive security analysis against third-party mobile payment must

e re-designed. 

To the best of our knowledge, there exists neither unified spec-

fication to regulate in-app payment process nor assessment ap-

roach to validate the security of them so far. Documents and sam-

https://doi.org/10.1016/j.jisa.2019.102358
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2019.102358&domain=pdf
mailto:wbyang@securitygossip.com
mailto:jarod@sjtu.edu.cn
mailto:yyjess@sjtu.edu.cn
mailto:dwgu@sjtu.edu.cn
https://doi.org/10.1016/j.jisa.2019.102358


2 W. Yang, J. Li and Y. Zhang et al. / Journal of Information Security and Applications 48 (2019) 102358 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

m  

p  

c  

i  

c

 

p  

m  

p  

t  

i  

i  

s  

t  

r  

r  

m  

fl  

c  

q  

r  

i  

s  

i  

s

 

g  

c  

m  

l  

l  

r  

t  

i  

t  

t

2

 

s  

m  

i  

t  

d

 

t  

c  

i  

(  

m  

i

 

d  

t  

v  

i  

t  

n  

b  

c  
ples of transaction provided by most in-app payment cashiers are

insufficient or even incorrect. Analysts must reverse-engineer the

binary code of an app and its integrated in-app payment SDKs to

recover and assess the process. Therefore, it is expected to first

summarize the status quo of current third-party in-app payment

before searching potential security flaws. After that, the security

analysis requires to conclude the basic security rules which should

be obeyed by both cashiers and merchants throughout the transac-

tion process as well as proposing corresponding violation detection

methodology. 

To investigate how widespread is insecure in-app payment in

both Android and iOS apps, in this paper, we make a system-

atic study of the world’s largest smartphone and mobile payment

market–China. A distinguishing feature of Chinese mobile payment

market is that most apps in China only support third-party in-app

payments. User cannot use other payment channels such as credit

card or online bank to pay the bills. On the other hand, users in

China also prefer to choose these third-party cashiers to manage

their payments because these cashiers provide more services than

traditional banks. With the help of those cashiers, users not only

purchase goods or make investment conveniently, but also trans-

fer to each other through their accounts for free. Nonetheless, the

prevalence of third-party in-app payment also brings significant

risks. Once these third-party payments are vulnerable, every in-

app transaction is inevitably suffering severe security threats. 

Our study tries to answer the following questions for our re-

search targets: (a) What exactly should be done to implement a

secure in-app payment? (b) Which kind of attack can be conducted

and who suffers financial loss? (c) What is the quantity of app

with insecure in-app payment and how to detect them? (d) What

factors lead to an insecure implementation? To answer the above

questions, we first conduct an in-depth analysis on services of four

mainstream third-party cashiers. The results of our analysis in-

clude: (1) we unveil the details of their payment processes through

reverse engineering of relevant SDKs and apps; (2) we conclude a

series of security rules which satisfy the security requirements of

in-app payment; (3) we illustrate severe consequences of violating

these rules including four attacks against both online and offline

transactions. 

After the investigation into the services of mobile payment

cashiers, we then develop a methodology to detect seven repre-

sentative violations of our proposed security rules in Android and

iOS apps, their integrated third-party payment SDKs, as well as

servers of merchants and cashiers. We prove the prevalence of in-

app payment through scanning 7145/10,0 0 0 Android/iOS apps and

pinpointing at least one in-app payment SDK in above one-third

of the analyzed apps. We then detect 2679/3972 Android/iOS apps

with payment and find hundreds of them vulnerable. In addition,

none of the four cashier’s SDKs reach the requirement regulated

by our proposed security rules. Even though the improperly de-

signed SDKs do not directly lead to vulnerabilities, they would ex-

pand the effect of user deception attack. Through combining these

flaws, various attacks can be constructed targeting both merchants

and users, including shopping for free or with another user’s ac-

count. As a result, these flaws affect almost all aspects of daily

life. 

Finally, we investigated the root cause of the flawed implemen-

tations of in-app payments. To our surprise, we found the docu-

ments and sample codes provided by cashiers are often not care-

fully examined and confuse developers. Some of them are incorrect

and even vulnerable, which directly lead merchants to these flaws.

Different from previous works [1–4] that focus on the errors of

merchants, our findings reveal that the cashiers also contribute to

the flawed third-party payment on mobile platform. We have re-

ported all the problems to the affected cashiers and obtained their

credits. 
a  
. Third-party in-app payment demystified 

It is prevalent for modern apps to build their in-app pay-

ent functionality with the help of a third-party payment service

rovider. On the one hand, The costs would be too high for mer-

hant to construct its own payment system. On the other hand, it

s also unrealistic for users to create and manage their capital ac-

ounts in each app respectively. 

Although in-app payment is pervasive on Android and iOS, the

rocess of how an app fulfills a transaction via third-party pay-

ent service is often obscure due to several reasons. First, im-

lementation variation of in-app payment is significant. Different

hird-party payment service providers (cashiers) regulate different

n-app payment processes and release their own SDKs for app to

ntegrate. Implementation aspects of third-party payment services

uch as used web APIs, integration style of SDKs, and the parame-

ers required differ greatly from each other. Second, cashiers often

elease documents and samples to app developers. However, our

eview illustrates that most of these documents are ambiguous and

ay confuse the app developers. Some code samples even con-

ict with the process regulated by the documents. Only by reading

ashiers’ documents and studying their sample code is not ade-

uate to conclude the exact payment process, and we will give our

esult in Section 5.5 . Third, testing the in-app payment not only

nvolves actual payment with money expending, but also requires

ome franchises and relevant documents only granted to verified

dentity such as registered companies. Many analysis efforts lack

uch qualifications and therefore are impeded. 

To demystify the details of in-app payment process, we first

ive a brief description of participants involved in payment pro-

ess. Then, we choose four popular cashiers: WexPay (in-app pay-

ent service provided by Wechat Wallet) [6] , AliPay (Alipay Wal-

et) [7] , UniPay (Unionpay Wallet) [8] and BadPay (Baidu Wal-

et) [9] and analyze their documents and code samples. We also

everse-engineer popular apps with in-app payment to understand

he details of payment implementation. After this reverse engineer-

ng work, we gain a panoramic view of in-app payment process:

wo representative payment process models that cover necessary

ransaction steps for four cashiers are concluded. 

.1. Definitions 

In a typical third-party in-app payment process, user browses,

elects and buys commodities in a merchant app ( MA ). Imple-

ented by the merchant, the MA and the merchant server ( MS )

nteract with each other. Information such as users informa-

ion, commodities provided, and order information are stored in

atabases on the MS . 

To support payment in app, an MA integrates one or more

hird-party payment SDK (TP-SDK) released by the third-party

ashier. In a checkout process, user chooses a third-party cashier

n the MA and makes a payment to the cashier. The cashier server

 CS ) records the payment information and status, and informs the

erchant the completion of the payment. The complete payment

nformation is then stored to the CS . 

Since cashier is the third party between user and merchant, the

etail of the merchant order (e.g., unit price about the commodi-

ies) is not the necessary information for cashiers due to the pri-

acy issue. Therefore, Apple’s IAP (In App Purchase) is not a typ-

cal third-party payment. Apple, as a cashier, requires merchants

o register all the content and its price on its website. Merchants

eed to offer their merchandises through the cashier rather than

y themselves throughout the transaction process. Thus, only the

ashier is actually involved in the Apple’s IAP payment process. In

ddition, the strict restriction on the goods type regulated by Ap-
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2 com.alipay.sdk.app.PayTask- > pay() 
le’s IAP further limits its application scenario. As a result, Apple’s

AP is not included in our work. 

.2. Unveiling payment process 

To unveil the payment process, we conducted a systematic

tudy against mobile payments in mainland Chinese market as our

esearch target for the following reasons: First, it is the world’s

argest smartphone and mobile payment market: about 890 mil-

ion users in this market use mobile devices to purchase goods and

ervices (by the end of 2018, according to research from the China

nternet Network Information Center). In the year of 2018, China’s

hird-party mobile payment tools handled transactions worth more

han 200 trillion yuan (29.4 trillion us dollar), much more than any

ther countries in the world. Second, unlike the mobile payment

arket in the U.S., where most mobile transaction is settled via

redit card through web or Apple Pay, a large portion of apps use

hird-party in-app payment services in China. Third, instead of a

ingle payment standard, most apps adopted a variety of payment

chemes provided by different third-party cashiers simultaneously.

ue to its sophisticated characteristic, mobile payments in main-

and Chinese market is a very representative target and is worth

eing studied. 

Another important fact for the mobile ecosystem of mainland

hina is that the official app store of Google (i.e., Google Play Store)

s unavailable. As a result, many Chinese companies or developers

hose to publish their apps on domestic app markets. Therefore,

e also collected our app samples from these markets. We col-

ected Android apps from Myapp [10] , the largest Android app store

n China [11] . This market also provides strict ‘official’ certification

ervice, which requires publishers to submit a series of materials to

rove their copyrights [12] . In addition, to collect iOS apps we have

o address the encryption issue of the Apple’s official App Store (all

pps downloaded from the App Store are encrypted and the analy-

is of such an app needs a decryption first). Fortunately, we found

5PP , a third-party iOS app market 1 have collected decrypted ver-

ion of most popular iOS apps. We therefore crawled this market

o obtain the samples needed. 

Note that in our study we did not download all apps in both

ndroid and iOS app markets. The main reason is that only apps

ith larger number of users and transactions would integrate mo-

ile payment services. We thus only chose those apps with either

arge download numbers or a relatively high impact. In particu-

ar, we download 7145 most popular Android apps with at least

0 0,0 0 0 users for each from Myapp , and 10,0 0 0 most downloaded

OS apps from 25PP . We argue that these apps are prevalent and

epresentative samples for our study. 

We choose four popular cashiers as our research targets: Wex-

ay, AliPay, UniPay and BadPay. Each of them has at least 100

illion users. Merchant can register to all four cashiers on two

obile platforms (Android and iOS) as long as it owns a legiti-

ated company registered to the Chinese Commerce and Industry

ureau. For every cashier, we get the TP-SDK and auxiliary ma-

erials of Android and iOS including code samples and relevant

ocuments. The documents describe not only interfaces of TP-SDK

ut also the suggested payment process and Web APIs of cashier

erver. Code samples illustrate simplified implementation for client

pp and server. Through studying the documents of four cashiers,

everse-engineering TP-SDKs and downloaded apps with static and

ynamic analysis, monitoring the network traffic of the transaction

rocess, and implementing sample code to real app and server, we

ave two observations about the in-app payment: (1) how preva-

ent is the third-party in-app payment on mobile platform; (2)
1 (a.k.a. PP Assistant) [13] , the largest third-party iOS app store in China. 
hich payment process model does merchant need to comply with

hen integrating third-party in-app payment function. We detail

hese observations in the following sections. 

.3. TP-SDK identification 

In order to find out which app uses third-party in-app payment,

e adopt feature based identification strategy to detect apps with

P-SDK. We reverse-engineer TP-SDKs of four cashiers on two plat-

orms and extract their unique features. We observe that if an MA

ses a TP-SDK, it needs to invoke a specific interface and passes

arameters, hence we make use of these interfaces as the feature

f TP-SDKs. For instance, if an Android MA uses TP-SDK of AliPay, it

ust pass the payment order information to AliPay SDK through a

ertain interface. 2 And for iOS apps, Alipay payment SDK also pro-

ide such interface. 3 For other three TP-SDKs, there are also similar

eatures. Note that the name of interface is not always an avail-

ble feature. Developers may use code obfuscation tools such as

roGuard [14] / ios-class-guard [15] to obfuscate the function names

n Android/iOS apps. Therefore, we manually pick a combination

f special strings in every TP-SDK that are seldom used elsewhere

s extra features. For instance, we find that WexPay uses specific

trings, 4 to label transaction data of payment request in its SDK,

hich are unique and can hardly be found in other SDKs. Simi-

arly, UniPay always has such strings as 5 in its SDK. Utilizing those

eatures, we build static analysis tools to scan apps of Android and

OS respectively. Our tool is based on AndroGuard [16] for Android

pps and Radare2 [17] for iOS apps. The result is listed in Section 5 .

.4. Process analysis 

After studying the documents and sample code of four cashiers,

e registered as a merchant to cashiers and developed proof-

f-concept apps and corresponding servers to better understand

he payment processes adopted by the four cashiers. Besides, we

ven downloaded and analyzed several popular merchant apps and

heir servers statically and dynamically. We reverse-engineered the

lient apps (with IDA [18] for iOS apps and Android native code,

ith JEB [19] for Android apps), monitored the network traffic be-

ween apps and servers (with Burp Suite [20] for HTTP/HTTPS mes-

age, and Wireshark [21] for TCP/UDP-based protocol), hooked spe-

ific methods or functions to retrieve/modify runtime data of mer-

hant apps (we have developed Xposed [22] and Frida [23] plug-

ns for Android and iOS apps, respectively), and constructed cus-

omized network requests to cashiers and merchant servers. 

We find that although the whole payment process of four

ashiers are somewhat different, they can be concluded as two

n-app payment process models (in Figs. 1 and 2 ). Both platforms

Android and iOS) of one cashier adopt the same model. Among

he four cashiers, WexPay and UniPay follow the process model

 (in Fig. 1 ), while AliPay and BadPay follow the other. We first

hoose process model I as an example to illustrate a complete

hird-party in-app payment process in detail. It is a simplified

odel only including essential steps and parameters of a transac-

ion. The whole process of the model contains nine steps in gen-

ral. 

1. The MS receives a merchant order ( order m 

) and the type of

cashier after a user selects the commodities and chooses a

third-party cashier in the MA. order m 

contains order informa-

tion only related to merchant (e.g., the type and the amount of
3 AlipaySDK payOrder:fromScheme:callback: 
4 _wxapi_payreq_appid, _wxapi_payreq_partnerid , etc. 
5 uppayuri, com.unionpay.uppay , etc. 
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Fig. 1. In-app payment process model I adopted by WexPay and UniPay. 

Fig. 2. In-app payment process model II adopted by AliPay and BadPay. 
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commodities user wants to buy), since cashier has not involved

yet by now. 

2. The MS generates a payment order ( order p ) according to order m 

,

and sends it to the cashier by invoking the Web API defined.

The order p should contain information about this payment, (e.g.,

order ID, merchant ID, total amount, notify URL address ). 

3. After receiving and verifying the order p , the CS will store pay-

ment information into its database, and returns a signed mes-

sage ( TN ) that contains a transaction number . Note that the

transaction number identifies the payment order and is gener-

ated by the cashier. 

4. After the MS receives and verifies TN, MS should sign TN and

send it to MA . Note that TN now contains the merchant’s signa-

ture. 

5. MA deals with received TN , and passes it as parameters to the

interface defined in TP-SDK. 

6. TP-SDK prompts its payment UI to accept user’s confirmation.

The payment UI in TP-SDK shows the detailed information of

the payment order acquired from the CS through its own net-

work channel (omitted in the Figure). After user confirms the

payment order and enters the account password, TP-SDK sends

the pay request to the CS . The CS checks the request, and then

pays for the order with money in user’s account. 

7. The CS sends a notification of payment to both TP-SDK (the step

with apostrophe ) and the notify URL of MS (the step without

apostrophe ). 

8. The MA shows payment result to user according to the notifi-

cation received by TP-SDK. 
9. The MS validates the signature of the notification, and makes

an extra query of the notified payment order to the CS to con-

firm details of the order including order ID, merchant ID, total

amount, etc . 

After all the above steps, the transaction is settled and the mer-

hant can ship commodities or provide services to user. 

When adopting process model I, WexPay and UniPay implement

imilar process with nuance differences. Both cashiers require dif-

erent extra parameters for order p and order m 

. Also, UniPay does

ot require the TN message to be signed and does not include Step

 (in Fig. 1 ) as a necessary step in its suggested process. 

When adopting process model II, however, AliPay and BadPay

ave relatively larger differences to WexPay and UniPay. The main

ifference occurs in Step 2. The MS just sends the generated signed

ayment order ( order p ) back to the MA other than to the CS after

eceiving the merchant order ( order m 

) request from the MA . Com-

ared with model I, in which the MA can only receive TN , the MA

n Fig. 2 receives the complete payment order information includ-

ng order ID, total amount of the payment, the notify URL address

f the MS , etc. And it transfers all the information to the integrated

P-SDK, which is responsible for dealing with all the detailed pa-

ameters of the payment order in this process. 

In Figs. 1 and 2 , messages with bold and italics text need to

e signed by the sender to prevent being tampered. So another

mportant factor in the transaction process is the signing method

f messages adopted by cashiers. AliPay and UniPay regulate the

HA1-RSA as their signing method. Merchant generates its RSA key

air, and sends the public key to the cashier. Also, cashier informs

very merchant its public key. The MS verifies the received signed

essage with the cashier’s public key, and sends message signed

ith its private key to cashier or to the MA . However, WexPay and

adPay adopt hash function (e.g., MD5) with a secret key (as the

alt of the hash function) to generate the signature. The secret key

s shared between the merchant and the cashier. In the later part

f this paper, we denote both the secret key of hash function and

he merchant’s RSA private key as KEY . 

. Security analysis 

In this section, we describe the conducted security analy-

is against the process models we concluded above. The secu-

ity of third-party payment has been studied before in previous

orks [1,2,4,5] . However, all of them focus on web service. In the

revailing mobile platform, the in-app payment introduces new

ulti-party models and thus, faces new security challenge. The

erchant client application and the embedded TP-SDK play more

ignificant roles which do not exist in traditional web model. So

t’s necessary to re-consider the security threats of the in-app pay-

ent on mobile platform. 

Although the payment process models that regulated by

ashiers have been vetted before releasing and are supposed to be

ecure, such multi-party models still struggle against various un-

xpected security threats due to the information asymmetry in the

ransaction process. Moreover, the whole transaction process in-

olves multiple parties including not only cashiers but also mer-

hants and users. Due to the ambiguous documents and confusing

ample code released by cashiers, developers of merchants often

isobey the process model regulated by cashiers and implement

iversified payment processes, which may lead to potential secu-

ity flaws. Any mistake committed by any party in the multi-party

odel may lead to a vulnerable process. Therefore, it’s necessary

o conclude security rules to regulate all parties in the model. 

In the following, we first describe the adversary model, and

hen define the security rules that a secure in-app payment must

omply. In addition, we clarify what the cashier and the merchant
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Fig. 3. Order Tampering Attack to Process Model I. 

Fig. 4. Order Tampering Attack to Process Model II. 
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hould pay extra attention to throughout the entire transaction

rocess of in-app payment. Finally, we describe four concrete at-

acks in detail under our reasonable adversary model if the cashier

r merchant violates the security rules, which may lead to the loss

f multiple participants in the model. 

.1. Adversary model 

Before discussing security rules must be followed by third-party

ayments and corresponding attacks, we first define the adversary

odel as follows: 

We assume that an attacker can always reverse-engineer an MA

nd the embedded TP-SDKs, since the app can be easily acquired

rom both Android and iOS app markets (even if the app is pro-

ected, techniques have already developed to circumvent it [24] ).

ven though the attacker is not able to sniff or tamper the net-

ork traffic between the MS and the CS under any circumstances,

e can forge a request or a message to either the MS or the CS

n our model, because such destination URL is not difficult to be

btained (by reverse-engineering apps or reading cashiers’ docu-

ents). 

When the attack targets a cashier or a merchant, the attacker

lays as a malicious user and tries to get profit (e.g., acquiring se-

ret information from merchant/cashier or even purchasing things

ithout paying) from either the merchant or the cashier. In this

ase, the attacker is assumed to use his own smartphone to do the

hopping, which indicates that he can arbitrarily modify the mo-

ile system (e.g., rooting the Android phone, jailbreaking the iOS

evice, debugging apps, etc) and thus manipulate the execution

nd data of both the merchant app and the embedded TP-SDKs. 

When the attack involves other users of the MA , the attacker

ims to fraud other users (e.g., deceiving other users to pay). In this

ase, the attacker is not able to control other users’ devices, i.e., not

ble to install malicious apps or repackaged MA on victim’s phone

y subterfuge. However, the attacker is assumed to control the data

ransmission between them (e.g., conducting an MITM attack with

he ARP spoofing or deceiving users to attacker’s malicious Wi-Fi).

ignature-based or anomaly-based IDS for smartphones [25] may

educe the possibility of users being phished in this case. However,

t is not common to deploy an IDS on a real world smartphone,

nd an IDS cannot protect merchants or cashiers. 

.2. Security rules 

According to the two types of process model adopted by four

ashiers and the adversary model, we conclude the following se-

urity rules that must be obeyed throughout the whole process in-

olving both cashiers and merchants, no matter how cashier regu-

ates the process model or which cashiers MA chooses to use. Oth-

rwise, the process will be breached. 

1. Payment orders must be generated ( Fig. 1 ) or signed ( Fig. 2 ) by

the MS only. 

2. Never place any secret (e.g., private key for signing) in the MA . 

3. TP-SDK must inform user detailed information of the payment

order. 

4. TP-SDK must verify the transaction belonging to the MA . 

5. Always use secure network communication between client and

server. 

6. MS should make an extra query to confirm notified payment’s

details. 

7. Always verify the signature of received messages. 

We conclude the above security rules by considering both the

ecurity requirements of a secure mobile payment mentioned in

fficial documents of SDKs, and the best practices of building a ro-

ust online payment system [1] . Particularly, our security rules are
omprehensive and consider not only multiple parties such as MA ,

P-SDK, MS , but also the connection between them. To the best of

ur knowledge, our proposed security rules are the very first ones

or third-party in-app payments. 

There are four types of attack that the payment process may

uffer if one or more violation of security rules occur, and the vic-

ims involve normal users of MA and the merchant. Then we will

escribe them in details. 

.3. Order Tampering 

In this type of attack, the attacker acts as a malicious user. If the

erchant fails to obey the Security Rule 1 and Rule 6 , then attacker

an cheat the merchant by sending a payment order ( order p ) to the

ashier different from the actual merchant order ( order m 

). In this

ituation, the attacker could tamper the content in the payment

rder such as the total amount and thus pay less money for the

rdered commodities without the merchant’s awareness. 

The attack for process model I is shown in Fig. 3 . In model I

 Fig. 1 ), the signed payment order is generated and sent by the MS

o the CS . A local attacker can only obtain the ( TN ) message which

oes not include any detailed information (e.g., the total amount of

he payment) of the payment order. Thus, it’s impossible to tam-

er the payment order information. However, if the MA incorrectly

mplement the payment order generation step in the app rather

han its server, the attacker can succeed in tampering the pay-

ent information. Since the attacker can take full control of local

pp and system, we merge the attacker with the MA in the Fig. 3 .

he order T p in the figure indicates that the payment order has been

ampered already and so does Fig. 4 . 

In model II ( Fig. 2 ), though the complete payment order infor-

ation can be achieved by the attacker ( order p need to be returned

o MA ), he can not tamper it since the payment order is signed by
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Fig. 5. Notification Forging Attack to process model I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Order Substituting Attack to process model II. 
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MS . A payment order with wrong signature will be rejected by the

cashier. However, if the merchant signs the payment order or leaks

the KEY in the MA , then the attacker could easily intercept and

tamper the received order information (e.g., modifying the price)

in the MA , and re-signing it as a legit one to TP-SDK (as shown in

Fig. 4 ). 

To fulfill this attack, another implementation flaw is required:

the merchant fails to confirm the notified payment order informa-

tion to CS ( Security Rule 6 ). Otherwise, MS can get every details of

the notified payment order including total amount, merchant ID,

etc after make the query to CS . It can refuse the tampered order

after verifying every details of it and does not ship commodities. 

3.4. Notification forging 

If the merchant fails to obey the Security Rule 2 (or Rule 7 ),

and Security Rule 6 , then it suffers notification forging attack, al-

lowing attackers to purchase commodity without paying it. In the

attack, a normal payment process is performed until the TP-SDK

requires user to confirm the order and enter password to pay for

it. At that time, an attacker does not pay for it, but instead sends a

fake payment result notification to notify the MS that the order is

paid successfully. The attack to process model I ( Fig. 1 ), for exam-

ple, is shown in Fig. 5 . If the order is not paid (Step 6 in Fig. 1 ), it

still remains ‘pending’ status, and the MS will not receive the notifi-

cation from the CS (Step 7 in Fig. 1 ). However, afterwards attackers

can forge the notification and send it to the MS (Step 6 in Fig. 5 ). If

the merchant trusts this fake notification and does not confirm the

order’s details to the CS (Step 8 in Fig. 1 ), the payment is success-

fully forged. The attack can also be performed to model II ( Fig. 2 )

with the same way, which we omit it here. 

Attackers need to exploit several mistakes committed by the

merchant to make a forged notification available. First, the notify

URL address of MS that receives the payment notification from CS

should be known beforehand. So the attack requires MA to contain

the notify URL address, which would be placed by the developers

accidently. Actually, as we illustrated before, MA who adopts pro-

cess model II (AliPay and BadPay) certainly contains the notify URL,

since all order information including notify URL is used as input of

the TP-SDK (Step 3 in Fig. 2 ). Second, the attack needs to construct

a forged payment order notification of the cashier and cheats MS to

accept it. Attackers can obtain the data format of the notification

message from documents released by the cashier, and then forge

it with a signature which proves the identity of the sender. The

KEY used here is often extracted from the MA , in which the mer-

chant’s developers place this shared secret key by mistake ( Secu-

rity Rule 2 ). Note that among four cashiers, only the notification of

those who adopt hash-function as their signing method (WexPay

and BadPay) can be forged because the cashier and the merchant

share the same KEY as their signing KEY . For those using SHA1-

RSA to sign the messages, the RSA private key of cashiers can be

hardly leaked, thus, forging the cashier’s message with legal sig-
ature is quite impossible. Moreover, we observe that some MS s

ven ignore validating the signature of the received messages ( Se-

urity Rule 7 ). Thus, the fake notification even with wrong signa-

ure is unconditionally accepted. Finally, similar to Order Tampering

ttack, notification forging also needs the MS to ignore the order

e-confirmation step. Otherwise the merchant can find out that the

otified payment order is still remain ‘pending’ status in CS . 

.5. Order substituting 

Different from the two attacks above, the victim of order sub-

tituting attack becomes the normal user of MA rather than the

erchant. The cause of the attack involves multi-parties’ violation

f security rules including both cashier ( Security Rule 3 and 4 ) and

erchant ( Security Rule 5 ). In this attack, the attacker substitutes

n order of one transaction to another, and misleads a victim user

o pay for the attacker’s order unconsciously. 

Fig. 6 shows the order substituting attack to process model II

 Fig. 2 ). The attack is available when the message returned from

S is transferred with an insecure network communication chan-

el. Thus, the attacker can act as a man-in-the-middle between MA

nd MS . Attackers can intercept the message and substitute signed

ayment order ( order p ) with another one ( order A p ) of a legal trans-

ction, and send it to the MA on victim’s device. The victim will

hen pay for the attacker’s order rather than his own order. Note

hat the attacker uses a legal payment order to replace the origi-

al one. This message usually belongs to a normal trade performed

y the attacker beforehand (steps between Step 2 and Step2 ′ in

ig. 6 ), so it is reasonable to cheat the victim’s TP-SDK and finish

he transaction with this message successfully. The attack to pro-

ess model I ( Fig. 1 ) is similar. The only difference is that the at-

acker needs to substitute the TN message (Step 4 in Fig. 1 ) rather

han the order p (Step 2 in Fig. 2 ) returned from MS . 

The root cause of this attack includes the lack of secure com-

unication channel as well as the inadequate prompt information

howed by TP-SDK. We discover that the payment UI (asking for

ser’s confirmation before user paying) of TP-SDK generally does

ot show enough information about current payment order, thus

he victim will confirm and pay for another order without being

ware of it. For example, if the payment UI only shows the total

mount of the order, then the attacker could make an order with

he same price of the victim’s order. Even if some TP-SDKs show

he commodities and the merchant name of the order, the attacker

ould make an order with same commodities while modifying the

onsignee since it is not difficult for attacker to know what victim

s going to buy through eavesdropping the merchant order request

Step 1 in Fig. 6 ) via insecure network connection between the MA

nd the MS . What’s worse, if the TP-SDK accepts the order p (or TN ),

hatever it is generated by the host MA or not, this attack can be
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xpanded that even a transaction from another MA can be substi-

uted to that from one MA . In other words, if attackers substitute

he original order p (or TN ) with anther order p (or TN ) of malicious

erchant registered to cashier by attackers themselves, the money

aid for the transaction will be transferred to attackers directly.

evertheless, our investigation indicates that some TP-SDKs do not

erify TN carefully, allowing attackers to substitute the original one

asily. 

.6. Unauthorized querying 

If the merchant violates the Security Rule 2 , leaking its KEY to

ttackers, it will also suffer the unauthorized querying attack. An

nauthorized querying attack allows attacker to query the details

f every transaction recorded in CS , acquiring secret business infor-

ation which should only be shared by cashier and merchant. The

oot cause of this attack is due to the leaking of merchant’s au-

hentication credential. Cashiers provide several Web APIs for mer-

hant to query various information, such as every payment order’s

tatus and details, the merchant’s history bill of everyday, etc. Fur-

hermore, cashiers make use of the signing KEY to authenticate the

dentity of each merchant. However, the KEY may be accidently

laced in the MA by the developers of the merchant. So the at-

acker could utilize the leaked KEY to query transaction informa-

ion illegally. 

. Detecting flawed in-app payments 

The violation of the seven security rules causes exploitable at-

acks and leads to serious consequences. In this section, we will

escribe how to convert these rules into detectable forms in the

ayment process both on Android and iOS platform. Detecting

hese violations is helpful to find flawed in-app payments to ac-

ual loss. Furthermore, we discuss the feasibilities and details of

etecting such flaws. 

.1. Local Ordering 

According to the Security Rule 1, MA is prohibited to generate

ayment orders for those adopting process model I. Local Ordering

efers to the incorrect ordering behavior implemented by the MA

ather than the MS . It allows the attackers to tamper the payment

rder. Note that this flaw only appears to apps with WexPay or

niPay, since in their regulations, placing the payment order must

e enforced by the MS . 

To detect this violation of Rule 1 , we search the existence of a

elevant destination URL used by the merchant to place a payment

rder. In detail, app will make request to specific URL 6 for Wex-

ay and UniPay, respectively. The request indicates the incorrect

ehavior of generating order locally. Therefore, we scan all strings

n DEX file and resource file of an APK for Android to find whether

he above two strings exist. For iOS apps, we search the strings in

he .ASM file generated by IDA batch mode. Once the URLs exist,

he app is then manually tested to confirm the security flaw. 

.2. KEY leakage 

In the two payment process models, several messages transmit-

ed need to be signed. According to our proposed Security Rule 2 ,

ensitive information, especially the KEY is prohibited to appear in

pp. Otherwise, attackers can tamper or forge messages with legal

ignature and camouflage to be certain party and cheat others in

he multi-party model. 
6 https://www.api.mch.weixin.qq.com/pay/unifiedorder for WexPay; https://gate 

ay.95516.com/gateway/api/appTransReq.do for UniPay. 

 

We combine pattern matching and dynamic testing techniques

o detect KEY leakage in apps. 

• WexPay . A hash function with secret key to generate the mes-

sage signature is adopted by WexPay. The secret key for mes-

sage signing is a 32-byte string with arbitrary content shared

with merchant and cashier. The MA uses this key to sign mes-

sage so we would like to search such hard-coded key in app.

However, simply searching 32 bytes length string in an MA of-

ten gives a huge amount of candidates. To effectively determine

the potential key, we utilize a Web API provided by WexPay as

an oracle to substantiate the key identity accurately. For An-

droid apps, we make use of the Web API which allows mer-

chant to download the history bill of one day with three nec-

essary parameters: appid, mch_id , and sign (generated by secret

key ). Therefore, we could leverage the appid and the mch_id to

help identify the secret key . Note that the features of these two

parameters are apparent: the appid is a 18-byte string with a

wx prefix, and the mch_id is a 10-byte string comprised of digits

only, and both two parameters are uniquely allocated to mer-

chant. We can first locate strings with similar features in DEX

file and resource file (strings.xml), and query the Web API for

the identity of the found parameters. If any of the input pa-

rameter is incorrect, the response of the query gives a corre-

sponding notification. For instance, if the first appid parameter

is incorrect, the Web API would directly return a “wrong ap-

pid ” notification without considering the following parameters.

Thus we could check each parameter individually until its cor-

rectness is identified, which significantly improve the efficiency.

And if all three parameters are correct (which means we find a

leaked key in app), the Web API responds either the merchant’s

real bill data, or “no bill exists ” if no transaction happened on

that day. Using this testing approach, we can effectively find

leaked WexPay key in an app. 

For iOS apps, we use similar methodology that also relies on

a Web API. Since WexPay had deprecated the downloadbill API

after we reported our findings ( Section 6 ), we choose another

web API—the placing order API 7 which should be used by MS

to generate payment order to WexPay. We fill in the appid and

mch_id with the candidate strings in apps and other parameters

such as total_fee, out_trade_no with reasonable value, and gen-

erate sign using suspicious secret key . if all parameters are cor-

rect, WexPay will response a message containing a prepay_id ,

which means a unique payment order related to the merchant

has already generated, and waiting for user payment. If any of

the parameter is incorrect, the message will be incorrect ap-

pid (APPID_NOT_EXIST), incorrect mch_id (MCHID_NOT_EXIST), 

or invalid signature (SIGNERROR). 

• BadPay . Similar to WexPay, BadPay uses a shared secret key to

sign its messages. However, no Web API is provided by BadPay

for us to verify the potential key candidates. Considering that

far fewer MA s use BadPay, we could confirm the key through

manual reverse engineering. 

• AliPay . For AliPay, merchant uses an RSA private key within a

Based64-encoded standard ASN1 certificate to sign the order

information. The certificate format contains remarkable feature

(A string with ’MI’ as prefix and at least 300 bytes long) and

can be easily located. However, the app may also contain such

certificates to fulfill other functionalities. To confirm the appli-

cation of found certificates, we adopt the following two heuris-

tics for Android apps. We first check whether the variable name

of the candidate certificate contains ali or alipay . Second, we

make use of the cross reference searching to find the Java class

that refers to the candidate certificate. Since the private key in
7 https://api.mch.weixin.qq.com/pay/unifiedorder . 

https://api.mch.weixin.qq.com/pay/unifiedorder
https://www.gateway.95516.com/gateway/api/appTransReq.do
https://api.mch.weixin.qq.com/pay/unifiedorder
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a certificate is used to sign the order of AliPay, the order in-

formation is often generated in the same class that uses the

private key. This generated order information contains specific

feature strings (“&service = mobile.securitypay.pay ” for example)

and can be easily identified. If a certificate corresponds to one

of the above properties, we regard it as the signing key of Ali-

Pay. For iOS apps, we build a tool based on IDA Pro similar to

the heuristics used for Android apps. In addition, we also find

a downloadbill Web API provided by AliPay, that could be used

as an oracle like WexPay, to confirm the KEY accurately. How-

ever, it could only be applied to apps using the latest version of

AliPay API, which is a very small portion of our samples. 

• UniPay . Similar to AliPay, UniPay also uses RSA private key to

sign its messages but the private key is encapsulated in a CER

format. We also adopt similar detection methodology to UniPay.

4.3. Incomplete prompt 

When an MA invokes the TP-SDK and shows the payment UI to

users (e.g., between Steps 5 and 6 in Fig. 1 ), users need to confirm

the order and decide whether to pay for it. As the Security Rule 3

implies, detailed order information should be prompted to user in

the payment UI completely. Otherwise, user may suffer deception,

resulting in an attack that what user pays is not what he/she really

buys ( Order Substituting Attack ). 

We detect this security flaw by checking whether TP-SDKs (for

both Android and iOS) display enough information about the pay-

ment order to user during the payment. In detail, the following

fields are checked: (1) payment order ID that represents the order

uniquely in both merchant and cashier. (2) what commodity or ser-

vice that users are going to pay. (3) user that the order belong to

in merchant app. (4) merchant that the order belongs to. (5) total

money of the payment. 

4.4. Transaction verification missing 

In a secure payment process, TP-SDK integrated in MA need en-

sure that the received payment order (Step 3 in Fig. 2 ) or TN (Step

5 in Fig. 1 ) actually belongs to the MA according to Security Rule

4 . Otherwise, malicious merchant can expand the Order Substitut-

ing Attack and directly get money from users as we mentioned in

Section 3.5 . 

We detect this security flaw on both Android and iOS platform,

through testing whether the TP-SDK accepts a payment order that

does not belong to the MA . First, we place an order using a normal

MA . Then we intercept the order p / TN message from the MS and

substitute it with order p / TN message generated from another MA .

And we check whether the order belonging to another MA can be

accepted successfully by the TP-SDK. If so, the violation of Rule 4

is confirmed. 

4.5. Insecure communication 

According to Security Rule 5 , network communication between

MS, CS , and MA (including its integrated TP-SDK) should adopt se-

cure transmission (e.g., via TLS channel). Otherwise, attackers can

intercept, eavesdrop or tamper what users want to buy (e.g., in

Step 1 of Fig. 1 ), the payment order information (e.g., in Step 2

of Fig. 2 ), or the transaction information (e.g., in Step 4 of Fig. 1 ).

It can also directly cause the Order Substituting Attack, as we men-

tioned in Section 3.5 . 

According to the adversary model, we mainly concern how to

detect the insecure network communication employed between

the MA (including TP-SDK) and the remote server. We set a proxy

to conduct MITM attack against HTTP and HTTPS connection to de-

tect the potential flaw. The insecure communication between TP-
DK and CS may cause wide and serious consequence. Since TP-

DK is integrated by a large number of Android and iOS apps,

ll the MA s with this kind of TP-SDK will suffer vulnerabilities

such as payment information leakage, transaction interception and

ampering, etc.), if the network communication is insecure. So we

dopt a refined policy to detect the flaw in TP-SDK. We try to sniff

nd attack the network communication during a manually con-

ucted payment process. If the connection between TP-SDK and

S is an HTTP connection, we regard it as insecure. Furthermore,

f the connection is HTTPS, we will check whether it verifies the

SL/TLS certificate properly, or implements the certificate pinning.

f the TP-SDK uses private protocol communicating with its server,

e further audit the security of this protocol (since there are only

our TP-SDKs, we could audit it manually). 

For the communication between MA and MS , we only consider

he situations of HTTP, insecure HTTPS (without certificate valida-

ion), and secure HTTPS. Our purpose is to find out the network

onnection of the exact step when MS returns order p / TN to MA is

ecure. Since our result needs high accuracy, we manually trigger

he MA to the step and monitor the network traffic. 

Since Apple introduced “App Transport Security”, which de-

aults apps to requiring an HTTPS connection, our detection to this

ecurity flaw mainly focus on Android apps. The limitations of au-

omated analysis methodology to detect insecure network commu-

ication for Android apps is so serious that lead to high inaccu-

acy. The key difficulty is that how to find the URL connection

elated to the step that MA and MS transmit the transaction in-

ormation accurately. Among a variety of URL strings in apps, it’s

uite impossible to decide which URL is responsible for transmit-

ing the order/transaction information only by name. In addition,

t is common for apps to join several substrings to the ultimate

RL address, or even use code obfuscation to sensitive URL, which

lso raise the difficulty of automated detection. Previous work like

alloDroid [26] only gave coarse detection result without identi-

cation of target URL’s logic function, and Reaves et al. [27] even

ndicated the inaccuracy of such automated analysis, which further

rove the difficulty of this work. Furthermore, finding the target

RL with dynamic analysis involves deep human interaction, in-

luding registering and login account, clicking products, choosing

n-app payment and paying for the order, which is also impossi-

le to be automated and large scale. As a result, we can only do it

anually to achieve accurate detection result. 

.6. Notified payment confirmation missing 

As Security Rule 6 implies, MS needs to make an extra payment

rder query (e.g., Step 8 of Fig. 1 ) to confirm every details of the

ayment order, even if it receives the payment notification. Since

his part of implementation is on MS , we can only apply an indi-

ect detection approach to detect the violation. We try to tamper

 payment order information which is different from the original

ayment order but with legal signature, and pay for it. If the MS

ccepts the payment order and ships the commodities, then we

an conclude that the MS does not re-confirm the notified payment

rder. Note that the tampered order message should be with cor-

ect signature, which means the samples here need to be based on

he result of KEY Leakage . We perform the dynamic detection on

 small portion of the samples manually due to the ethical con-

ideration. Also the process involves much human interaction such

s placing orders and checking the payment’s status, which makes

utomated analysis almost impossible. 

.7. Signature validation missing 

Security Rule 7 implies that MS is supposed to check the in-

egrity of every received message (e.g., in Steps 3, 7, and 9 in
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Table 1 

TP-SDK distribution. 

Cashier Android iOS 

WexPay 2260 3786 

AliPay 1299 1801 

UniPay 574 785 

BadPay 34 47 

Total 2679 3972 

Sample 7145 10,000 

Table 2 

Flaws in merchant apps. 

Cashier KEY leakage Local Ordering 

Android iOS Android iOS 

WexPay 155 249 104 88 

AliPay 398 276 / / 

UniPay 0 0 0 0 

BadPay 7 2 / / 
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ig. 1 ). Otherwise, MS would accept messages even with incorrect

ignature. To detect this flaw, we try to place an order but with-

ut actually paying for it, and then forge an order notification to

he MS with incorrect signature. If the merchant accepts the pay-

ent order, Then we can conclude that MS fails to check the signa-

ure properly. Here the samples are based on the apps that commit

otified payment confirmation missing . Because we need to exclude

he negative result caused by successfully confirming the notified

ayment. 

. Empirical study 

To investigate the flawed in-app payment implementations, we

rst conduct our TP-SDK identification to the 7145 most popular

ndroid apps from Myapp market and 10,0 0 0 popular iOS apps we

ownloaded from 25PP . As Table 1 shows, 2679 Android apps and

972 iOS apps integrate at least one TP-SDK, and most of them

ontain more than one TP-SDK. The proportion of Android and iOS

pps supporting in-app payment is as high as 37.5% and 39.7%, re-

pectively, which proves the prevalence of third-party in-app pay-

ent. 

Then we detect each security flaws we mentioned in Section 4 .

e classify these flaws into four categories involving MA , TP-SDK,

S , and network communication. We find that hundreds of the

erchants violate at least one security rule and none of the four

P-SDKs strictly obey these security rules. Besides, we further in-

estigate the official documents and analyze sample codes released

y four cashiers in-depth and gain some interesting and unex-

ected findings, which may imply the root cause of these flaws.

hen we choose representative vulnerable apps based on the result

f detection and then exploit their security flaws to prove the va-

idity of our analysis. We provide them as case studies to illustrate

he complexity of conducting concrete attacks against real world

ransactions. 

.1. Flaws in MA 

We first detect those flaws in the MA s of both Android and iOS.

he detection result is shown in Table 2 . We can see that hundreds

f the merchants leak their KEY s in MA s. Nearly one hundred mer-

hants (Android and iOS respectively) using WexPay generate and

end payment order in MA s. 

Note that our KEY Leakage result of WexPay has no false posi-

ive since it is based on the response messages from WexPay’s Web

PI as we mentioned in Section 4.2 . The result of detecting Wex-

ay destination URL is over 130 of Android and 110 of iOS. How-
ver, after our manually confirmation, 104 of the Android and 88

f the iOS apps really do Local Ordering , and the rest just hard-

ode the URL without invoking it. All the Local Ordering apps of

exPay leak the KEY since they generate and sign the payment

rder in MA . However, another 51 Android and 161 iOS apps ei-

her use the KEY to sign the received TN message or just hard-code

he KEY without actually using it, both violating the security rules.

lso we detect that nearly 500 Android and 430 iOS apps inte-

rated AliPay contain strings with RSA private key features. Among

hem, we find out that 398 Android and 276 iOS apps actually leak

heir AliPay private keys using the locating techniques mentioned

n Section 4.2 , and the rest are the keys of other SDKs. Since only

4 Android and 47 iOS apps integrated BadPay, we do the Key Leak-

ge detection manually. We find out 7 of the Android and 2 of the

OS apps leak their keys in several ways, such as hard-coding its

EY in apps or receiving KEY from server. In addition, we find out

hat several apps share the same KEY of WexPay and AliPay, which

eans that they are either using the same checkout account or de-

eloped by the same company. 

Note that while some MA s of the other three TP-SDKs just sign

 payment and send it to the TP-SDK, leading to the KEY Leakage ,

n our study we found NONE of Android or iOS apps using UniPay

eak their KEY s or commit Local Ordering . One possible reason is

hat UniPay SDK does not need the signature of TN as a parameter,

hile other SDKs often do. This feature of UniPay does reduce the

isk of KEY exposure and we will discuss a more direct cause in

ection 5.5 . 

.2. Flaws in TP-SDK 

Since TP-SDKs are provided by the cashiers and integrated by

he MA , flaws in specific TP-SDK directly affect the host MA . We

valuate the four most popular TP-SDKs provided by AliPay, Wex-

ay, UniPay, and BadPay respectively, including Android and iOS

ersion. The result is shown in Table 3 . We find out that one type

f SDK in Android and iOS has the same result. Only WexPay ver-

fies TN correctly. TN accepted by WexPay SDK includes parame-

ers of merchant ID, transaction number , etc. WexPay SDK achieves

he MA certificate through system API in Android, and checks the

onsistency of the APK certificate and merchant ID . It also checks

hether the transaction number belongs to the merchant ID . In con-

rast, we succeed in invoking the other TP-SDKs (AliPay, UniPay,

adPay) integrated in the MA by the transaction order of another

A . Also, we find that both WexPay and AliPay require the regis-

ered merchants to submit their certificates of MA , while UniPay

nd BadPay do not. Obviously, only WexPay makes use of the cer-

ificate to verify TN . 

For Incomplete Prompt , we manually check every elements pre-

ented on the payment UI of every TP-SDK. We find out that all

our TP-SDKs do not present the order’s owner in the UI, lead-

ng to the risk of phishing. BadPay only shows the total amount

f the payment order, which is obviously insufficient. WexPay and

liPay both show the order description submitted by merchants.

ut they do not require the merchant to submit necessary infor-

ation about the order such as the order ID, the order owner, etc.

niPay and WexPay show the merchant name of the order while

liPay and BadPay do not. Also for UniPay, order ID and payment

ime will be shown to users only if a spinner on the UI is clicked.

n all, every TP-SDK lacks necessary information more or less on

ayment UI, which may lead users to be deceived. 

We manually check the implementation of network commu-

ication of four TP-SDKs. We reverse-engineer the TP-SDK using

DA [18] and JEB [19] as well as sniff the network connection with

ireshark [21] and Burp Suite [20] . Besides, we locate the meth-

ds/functions of sending/receiving network message in TP-SDKs

nd hook them (using Frida [23] and Xposed [22] ) to observe how
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Table 3 

Flaws in TP-SDKs. 

Cashier Transaction verification Information prompt Network communication 

OrderID Commodity Owner Merchant Money 

WexPay � × � × � � secure private protocal 

AliPay × × � × × � HTTPS pinning 

UniPay × � � × � � HTTPS pinning 

BadPay × × × × × � HTTPS validation 

Table 4 

Flaws of MS and network communication. 

Platform Flaws in MS Insecure network in MA 

Sample Rule 6 a Rule 7 b Sample HTTP HTTPS c HTTPS 

Android 15 9 2 87 45 4 38 

iOS 10 4 1 / / / / 

a Notified Payment Confirmation Missing. 
b Signature Validation Missing. 
c Https without SSL certificate validation. 
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these TP-SDKs implement their network protocols. As a result, we

find out that SDKs of AliPay and UniPay use HTTPS to connect

to their servers and adopt certificate pinning. WexPay SDK uses a

proprietary protocol to communicate with its server. After the re-

verse engineering, we find that it implements its key agreement

algorithm based on ECDHE, and the ephemeral keys are authenti-

cated with another public key of WexPay, which is hard-coded in

the SDK. Thus, the protocol is secure enough to avoid an MITM at-

tack. The SDK of BadPay validates the SSL certificate properly, thus,

is secure. However, compared to the other three TP-SDKs, BadPay

does not adopt SSL-pinning, which means it can not be protected

against a compromised CA. 

5.3. Flaws in MS 

We tampered the payment order of 15 Android and 10 iOS apps

with correct signature using their leaking KEY s, and paid for it to

see whether MS would accept them. The result is shown in Table 4 .

Since the action need really exploit the KEY Leakage vulnerabil-

ity, involving a lot human interactions like MA account registration,

placing a merchant order, tampering the payment order, and pay-

ing for it, it’s unrealistic to be automated and large-scale. So we

did it manually and found that 9 of the 15 Android apps and 4 of

the 10 iOS apps that finally accepted the tampered order, which

means that their MS s miss the notified payment confirmation to

CS . Among the 13 vulnerable apps, there are MA that use WexPay,

AliPay or BadPay. 

We further checked whether the MS s of the 9 Android apps and

4 iOS apps verify the signature properly. We got the notification

message format according to cashiers’ documents, forged the mes-

sage with incorrect signature and sent it to the Notify URL address

of the MS . The result is that two of the nine Android and one of

the four iOS apps’ servers still accept the payment. It indicates that

even if the KEY is not leaked, attackers can still buy products with-

out paying for it. 

5.4. Flaws of network communication 

Since Apple introduced “App Transport Security”, which de-

faults apps to requiring an HTTPS connection, we only detect the

insecure network communication on Android apps. We manually

test 87 most popular Android MA s chosen from the 2679 Android

apps with embedded TP-SDKs to evaluate the security of their con-

nections to the MS during the payment. The result is also shown in

Table 4 . There are 45 apps using HTTP connection and 42 apps us-

ing HTTPS connection. Among 42 apps who use HTTPS connection,
our of them fail to validate SSL certificate properly. In addition,

lthough we do not find proprietary protocol used by MA to com-

unicate with the MS , some apps adopt home-brewed encryption

chemes to protect the content in HTTP connection. Since those

ncryption schemes generally lack a mature session key manage-

ent, we regard them as insecure without further investigating

he security of their encryption. In all, these 49 vulnerable apps

ncrease the risk of suffering Order Substituting Attack. 

Although we did not test all the 2679 apps due to the in-

ccuracy of automatic analysis (see details and explanation in

ection 4.5 ), the result of the 87 samples through manual work

hows that a large proportion of merchants are still not cautious in

mplementing secure network communication. It is an astonishing

esult that there are still so many popular apps use insecure HTTP

hannel even if all of them are related to financial transaction. Note

hat the tested samples are the most popular apps with larger user

mount and stricter security audit. We believe that those samples

ith less user amount may perform worse on building secure com-

unication. Moreover, we find that cashiers only request the mer-

hant to adopt HTTPS communication in the MA as an optional

equirement rather than a mandatory enforcement. So merchants

ay ignore the request and implement insecure network commu-

ication. 

.5. Root cause inquiry 

In our opinion, cashier as well as merchant should be blame

or the vulnerabilities of in-app payment in mobile platform.

or cashiers, they once released ambiguous, confusing and self-

ontradictory documents and sample codes (although they may

orrect some of them afterwards). Even the official sample code

iolates several security rules. As a result, merchants who follow

hese samples codes suffer our proposed attacks. Also inappropri-

te implementation of cashiers’ TP-SDK may expand the attack ef-

ect along with other flaws (as we mentioned in Section 3.5 ). For

erchants, developers didn’t update their app in time when some

f the cashiers correct their vulnerable sample code. In addition,

erchant introduced their in-app payment functionality without

ully understanding the third-party mobile payment model, along

ithout necessary security testing and auditing. 

We also have some interesting findings after reviewing the

ample codes as well as manually checking the documents of the

our TP-SDKs, Even though all of the four TP-SDK documents claim

hat the KEY needs to be kept in secret, their sample codes imple-

ent the process of message signing in their client apps, leading
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o the KEY leakage, except UniPay. It can be used to explain that

o many MA s commit vulnerabilities when using WexPay, AliPay

r BadPay (while become secure using UniPay). For example, the

ample code released by WexPay directly commits Local Ordering ,

hich obviously conflicts with its official process. We also find that

he figure describing the process of the payment released by AliPay

efines that the order should be signed in client app and so does

he sample code, but the code comment in the sample says that

he signing step should be in MS . We hypothesize that the contra-

iction between documents and sample code confused merchant

evelopers a lot, leading those developers who follow the sample

uring their development to commit these mistakes. Only the sam-

le code of UniPay implementation keeps consistent to their doc-

ments, making the order generating and signing in the MS code,

o in our detection none of the APPs are flawed when using Uni-

ay. Also, we find that UniPay provide very detailed materials to

nstruct developers to deploy their certificates and test develop-

ent environment, etc. It shows that the cashier is the key fac-

or to the security of merchant implementation. In addition, since

he KEY of WexPay can be modified to any string as long as mer-

hant notifies cashier, we find that some leaked keys, which are

upposed to be random strings, are modified to a weak key such

s 12345678912345678912345678912345 , or just the name of mer-

hant, which may suffer brute-force dictionary attack, or social en-

ineering. 

We also try to discover the incentive of flawed MS s. We find

hat not all cashiers release the sample code of MS , thus mer-

hant needs to implement it without example by themselves. Even

f there is sample code for MS , server implementation varies a lot

ompared with the client. Merchant may implement their servers

y using Java, PHP,.NET, Python or even native language, which are

ut of the language scope of sample code released by cashier. Even

hough cashiers suggest merchants to do these validations in doc-

ments or some even implement them in sample code if it has,

erchant may also ignore it during the code transplant or without

xisting correct code examples. 

Although the third-party in-app payment involves financial

ransaction and should have high security level, none of the

ashiers emphasize the security in particular. Some cashiers just

ention it (e.g., suggesting the merchant to implement the net-

ork communication in HTTPS in the end of the documents),

hich is easy to be ignored by merchants. Not to mention the fact

hat improper designed TP-SDK and incorrect documents/sample

odes released by cashiers. Previous work [1–4] mainly focus on

he security of the merchant. Acar et al. [28] ascribe Android

ode insecurity to informal documentation such as Stack Overflow,

hile official API documentation is secure but hard to use. How-

ver, our work shows that when it comes to the mobile third-party

n-app payment, even official documents/sample code released by

ashiers lead to the code insecurity, which may be helpful to im-

rove the security of the whole ecosystem of third-party payment.

.6. Case studies 

We choose several flawed merchant apps to perform real at-

acks. It shows that these detected violations of security rules can

irectly lead to serious consequence including financial loss in real

orld. 

.6.1. Order Tampering in iOS app 

The first case is an iOS app used by patients to make appoint-

ents with doctors. This app requires the patients to pay the reg-

stration fee while making an appointment. However, the app vi-

lated Security Rule 1 , signing the order information in the client

pp. We hooked function used to execute SHA1-RSA signing of the

rder information in the MA with the help of Frida, a universal
inary analysis framework that supports iOS app binary code in-

trumentation [23] . We have implemented an Frida script to tam-

er the amount money to only one yuan in the order information

nd re-signed the message. Then the TP-SDK successfully accepted

he order information, asking for paying this appointment with one

uan . After we paid, the app in the MA showed that we success-

ully make an appointment to the doctor with the registration fee

aid with the original price (30 yuan ). Even when we went to the

octor afterwards, our “less paid ” registration fee did not attract

ny awareness, which indicates that the merchant fails to confirm

he notified order details. We then reported this vulnerability to

he merchant and helped update the app in a week. 

.6.2. Order substituting 

We proved that Order Substituting Attack can be automated and

et user pay for the attacker’s order without awareness. We em-

loyed the attack on a wireless router of our local area network.

ince we control the router, we can conduct MITM attack to the

evices in the same LAN. We set a MITM proxy on the router to re-

lace self-signed HTTPS certificate to the original one and decrypt

he content of HTTPS connection. 

The victim app in this case is a popular e-Book Reader of An-

roid with over 20 million downloads. Users can purchase non-free

-books in this app via payment channels of all four cashiers. We

ake the BadPay for the case. The app use HTTP connections when

sers browse book lists in the app. When users want to pay for

 book then the connection will turn to HTTPS but the app fails

o check the HTTPS certificate correctly (allow all certificates de-

cribed in [26] ). So our proxy can intercept, eavesdrop and tamper

he connection. Once a user orders a book and is about to pay, our

roxy extracts from the network traffic which book the user want

o buy and the order information including price (10 yuan in the

ase). Then our proxy places a new order request using another

pp (a take-out food order app) to buy a burger which is also 10

uan , and get the order information from the MS without paying

or the burger in the latter step. Instead, the proxy intercepts the

ayment order response of the book and substitutes it with the

ttacker’s burger order. As a result, the MA receives the replaced

rder response and prompts the user with its payment Activity (UI

omponent of Android apps) of the TP-SDK. Note that information

n the payment Activity of BadPay only including price, are ex-

ctly the same as the price of the book. User cannot distinguish

his replaced order and is cheated to pay for it. Thus after the

ayment, the burger is paid and delivered to us while the e-book

s still kept unpaid. When user paid for the attacker’s order and

ound their own orders are still unpaid, they just believe it is the

elay of the CS that leads to a temporary unpaid status. Imagine

hat if the take-out food order app here becomes a malicious MA

ontrolled by the attacker, then the attacker can easily generate an

rder in arbitrary price according to the victim’s order and substi-

ute it. Thus, after user pay for it, the money is directly transferred

o the attacker’s account. Even with those TP-SDKs that display the

erchant name (WexPay and UniPay), the attacker can still cheat

sers to pay for attacker’s order in the same app. 

Since a thorough fix of this issue is to apply HTTPS to the whole

ebsite, it took several weeks for the merchant to release the new

ersion of the app after receiving our report. After that, the vulner-

bility was eliminated. 

.6.3. Android app with multiple vulnerabilities 

Apps may violate multiple security rules and even patch vulner-

bilities incompletely, so a relevant transaction could be vulnerable

o not only a single type of attack. To illustrate, we demonstrate

ow to acquire free movie tickets in different ways by exploiting

 movie ticket ordering app with an approximate 10 million users.

he vulnerable app allows users to select the cinema, the movie,



12 W. Yang, J. Li and Y. Zhang et al. / Journal of Information Security and Applications 48 (2019) 102358 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

b  

H  

C  

f  

B  

r

 

i  

t  

s  

t  

t  

t  

A  

A

 

t  

e  

S  

f  

u  

u  

t  

d  

d

7

 

q  

p  

p  

W  

s  

l  

m  

w  

c  

s  

t  

S  

s  

b  

a  

i  

t  

c  

r

 

p  

a  

d  

c  

t

8

8

 

S  

s  

a  

i  

t  
and the seats they want, and then buy the movie tickets online via

an in-app payment. After the payment, users will get a ticket code

and when they get to the cinema, they can enter the ticket-code

on an automated ticket machine to get the real movie tickets. 

Unfortunately, We detected several security flaws in this app

when users pay for tickets via WexPay in the app. The first one

is that the app commits Local Ordering mistake and thus exposes

the secret key and notify URL. As a result, an attack can hook the

order-generation function based on Xposed in the app and tam-

per the price to a particular value (e.g., one yuan ). In addition,

with this leaked secret key, an attacker is able to download all

bills of each day of the merchant. The bill also contains the de-

tails of every transaction in that day, including payer, paying bank,

discount, etc. Thus the attacker can know exactly how much peo-

ple buy movie tickets through WexPay everyday in that app, which

obviously should be confidential to any unauthorized visitors. To

validate the vulnerability, we conducted a penetrating test to buy

a ticket, and paid for it via WexPay with only one yuan (or even

cheaper if we wish) and received the available ticket-code, fetched

the physical tickets and watched the movie successfully. 

After we reported the Local Ordering flaws to the merchant (and

they replied that they have fixed the vulnerability in the next ver-

sion of the app), we tested the new app again. This time we found

that the app is still vulnerable to another kind of attack. In detail,

an attacker follows all the normal step of a transaction until the

app invokes the WexPay’s payment Activity to ask for the payment

password to pay for the ticket. Then the attacker terminates the

following steps and directly forges a payment notification with the

signature signed by the leaked KEY in the previous attack to the

merchant server. Surprisingly, our ethical test found that we could

still get valid ticket-code, which means the merchant only moved

the placing order step from the app to its server, but never renewed

the leaked KEY . Even worse, the merchant server still miss the no-

tified payment confirmation as before. 

Before informing the merchant and repaying the tickets we

have bought this time, we have waited for a certain period (thus

the merchant could check the collection of all past orders period-

ically sent from the cashier) to check whether the merchant veri-

fies it. Disappointingly, until we explained our behavior to the mer-

chant this time, they still had no idea about our two penetrating

tests. In the end, we help them fix all these flaws through renew-

ing the secret key, reconfirming the notified payment, and verify-

ing its signature correctly. And we have repaid all fees for tickets

bought in our penetrating tests. 

6. Ethical consideration 

We carefully designed our experiments to avoid ethical prob-

lem. First, we reported all our findings and the behaviors we per-

formed during the experiments to the related parties and did what

we could do to help them improve the systems. Our effort was ap-

preciated by these organizations. In detail, we reported the mis-

takes in documents/sample codes to WexPay, AliPay and BadPay.

All of them have fixed and updated it. For instance, Official doc-

uments of AliPay [29] shows an updated payment process figure.

The original figure told the developers to generate and sign the

payment order in client app (as we mentioned in Section 5.5 ),

which is obviously insecure. Both AliPay and WexPay updated their

official attentions of developing due to our suggestions [30,31] . All

the three cashiers expressed their gratitude to us. Also we de-

tected flaws (such as missing order signature validation) of sev-

eral merchant servers described in Section 5.3 and performed sev-

eral proof-of-concept attacks described in Section 5.6 . We reported

all these flaws and explained our behaviors to these influenced

merchants as soon as we carried out our experiments, and helped

them to fix these vulnerabilities. Since hundreds of merchants suf-
er flaws in their apps as we mentioned in Section 5.1 , it would

e very difficult for us to inform all of the merchants directly.

ence, we report the vulnerable MA list to the Security Response

enter of Tencent, Ant Financial, and Baidu, who are responsible

or the security of their payment ecosystems (WexPay, AliPay, and

adPay). They informed all the related merchants of their security

isks, revoked leaked KEY and renewed them. 

We use Web APIs provided by cashiers as oracles to help find-

ng the leaked KEY in MA , which need to brute-force the parame-

ers of the API and may induce potentially heavy load to cashiers

erver. We did restrict the frequency and times of invoking the API

o avoid potential denied of service attack against the server. Af-

er we described our detecting method to cashiers, they confirmed

he issue and planned to impose some constraints to invoking the

PI in future (WexPay even deprecated their download history bill

PI). 

In addition, we ensure no financial damage was inflicted upon

he merchants by returning items or re-paying the unpaid orders,

tc. The victim user in the Order Substituting Attack (described in

ection 5.6.2 ) is actually a colleague of us. We informed him be-

orehand and later paid for the e-book order for him. We made

se of the result of downloaded history bills of merchants to eval-

ate the feasibility of Unauthorized Query attack, and helped to de-

ect KEY Leakage in MA using WexPay and AliPay. We not only

escribed our detecting method in detail to merchants, but also

eleted all these data at once to avoid further exposures. 

. Discussion 

Though we could analyze more samples, we believe that the

uantity is enough since the methodology we introduced in the

aper are universal and could be applied to larger quantity of sam-

les. Besides, all samples we choose are popular and influential.

e believe that other apps are similar to our samples and our

amples are enough to help summarize the status. Although our

arge scale analysis reveals that the quantity of flawed in-app pay-

ent implementations is surprising, we have to point out that

e underestimate the actual danger. During the TP-SDK identifi-

ation, our methodology is based on static code feature. We clas-

ify many apps, especially in Android, protected by code packing

echniques as not using any TP-SDK, while they do integrate TP-

DKs. In the detection of flaws in MA , we adopt static analysis for

earching leaked KEY candidate, which may ignore those encoded-

ut-exposed KEY in apps. However, only a small portion of apps

dopt such self-protection measures according to previous stud-

es [24,32] . Since our work presents a systematic approach to de-

ect those vulnerabilities, we believe the analysts of merchants and

ashiers could adopt our approach to audit their products before

eleasing. 

Our security analysis mainly focuses on the interfaces of multi-

arty involvement in the third-party in-app payment. We pay less

ttention to the attacks or flaws only involving single party (tra-

itional user-to-merchant payment model), for instance, the mer-

hant order tampering, or denied-of-service attack on order ID or

ransaction ID. 

. Related work 

.1. Insecure third-party SDK 

Meanwhile, vulnerabilities or threats introduced by third-party

DKs in mobile applications have also been studied by many re-

earchers. Chen et al. [33] studied on potentially-harmful libraries

cross Android and iOS through clustering similar packages to

dentify libraries and analyzing them using AV systems to find

hose libs. Wang et al. [34] identified serious authentication and
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uthorization flaws in applications that integrate Single-Sign-On

DKs. Li et al. [35] aims to understand and analyze the secu-

ity hazards imported by Push service in Android applications.

lueFinder [36] tries to identify privacy leakage from apps to un-

rusted third-party libraries. Wang et al. [37] and [38] demystified

nd assessed the vulnerabilities of OAuth protocol on mobile plat-

orm, which often introduced by third-party providers as SDKs in

ndroid applications. However, the payment SDK in mobile appli-

ations has never been studied before. We propose a comprehen-

ive methodology to detect various security rule violations in those

pps who embed third-party payment SDKs. All of these flaws lead

o serious consequence and result in financial loss for different par-

ies involved. 

.2. Mobile app vulnerabilities 

The security analysis of vulnerabilities in mobile application has

lso become hot spot these years, with the dramatic growth in mo-

ile users. It’s common that misuse of security libraries leads to

aws in apps. iCryptoTracer [39] and CryptoLint [40] is proposed to

dentify the misuse of cryptography functions in iOS and Android

pps respectively. CRIOS [41] focus on the large-scale app analy-

is for third-party library usage and network security on iOS. Fahl

t al. [26] , SMV-Hunter [42] and Reaves et al. [27] all perform their

pp analysis to detect unsafe SSL/TLS and cryptography usage. Dif-

erent from all of these work, our analysis of security flaws caused

y apps integrating third party in-app payment libraries. We reveal

hat these flaws during in-app payment caused both by merchant

pps and third-party payment SDK providers. Among these flaws,

EY Leakage has been studied before. Both PlayDrone [43] and

redMiner [44] try to detect token exposure of AWS and OAuth

n Android applications. However, we adopt a more efficient and

ccurate methodology, combining local program analysis and a re-

ote Web API, to detect such flaws in third-party payment. Be-

ides, our work covers the security threats and flawed implemen-

ations throughout the whole payment process, rather than focus-

ng on a particular type of vulnerability detection. 

.3. E-commerce vulnerabilities 

The security analysis of e-commerce and payment has attracted

he attention of researchers in recent years, since vulnerabilities

ay cause great impact and financial loss. As far as we know, the

nly similar work is implemented by VirtualSwindle [45] , which

an perform an automatic attack against in-app billing service.

owever, it seems to be just a small part of our work. First, the

n-app billing service described in the paper is just one scenario

f the in-app third-party payment. The service is simpler and less

opular compared to our research targets. Second, VirtualSwindle

an only launch one type of attack and the adversary model as-

umed in the paper is too limited. However, our work describes

our types of threats and attack model is more diversified. Third,

nly 85 Android apps were studied in the paper compared with

he thousands of samples in our work. Overall, we perform a more

arge-scale and systematic analysis to third-party in-app payment.

ur work focuses on finding all flawed implementations through-

ut the whole payment process, not only launching one type of

ttack. 

Another work on mobile payment is [46] , which studied the se-

urity of mobile off-line payment token (QR code). Our work aims

o find the flawed implementation of in-app payment, not the QR

ode payment in off-line situation. 

Wang et al. [1] are the first to analyze logic vulnerabilities

n Cashier-as-a-Service based web stores, and found several logic

aws manually. Sun et al. [3] propose to detect logical vulnera-

ilities in e-commerce application through static analysis of avail-
ble program code. Pellegrino and Balzarotti [4] proposed the idea

f black-box detection of logical vulnerabilities in e-shopping ap-

lications Sudhodanan et al. [5] propose an automatic technique

ased on attack patterns for black-box, security testing of multi-

arty web applications. InteGuard [2] offers dynamic protection

f third-party web service integration including cashier service in

erchants’ websites. All of the work mainly target on e-commerce

n web application, while we focus on mobile platform. 

Compared with an automated security analysis against Android

pps, that against iOS apps (especially large-scale apps) is more

ifficult since much less program analysis tools as well as method-

logies for iOS apps have been proposed. In comparison to the

onference version [47] of this paper we present new contribu-

ions especially on the analysis of iOS platform including: (a) new

ethodology of third-party payment SDK identification for 10,0 0 0

OS apps; (b) automated vulnerability detection method designed

or 3972 iOS payment apps; (c) new detection method of certain

aws for both Android and iOS (old method in our previous work

as blocked due to our report); (d) new experiment results for

ulnerable iOS apps, embedded TP-SDKs and their servers; (e) new

ulnerability exploits and attack cases of vulnerable iOS apps in

eal world. 

. Conclusion 

Insecure in-app payment is becoming a main threat to mobile

cosystem as more and more online transactions are transferring

rom website to app. Different from traditional web payment, in-

pp payment involves more sophisticated implementation details

nd the process is often obscure. To demystify processes of pop-

lar in-app payments and reveal potential security risks, we con-

uct a comprehensive analysis on mainstream third-party in-app

ayment schemes in Android and iOS apps. Our analysis investi-

ates implementations of four in-app payments and concludes a

eries of security rules that should be obeyed. We not only pin-

oint the serious consequence of violating security rules, but also

etect these flawed implementations. Our statistics paint a sober-

ng picture–hundreds of apps integrated with third-party in-app

ayment SDKs are vulnerable. Besides, our further investigation in-

icates that cashier, as well as merchant are blame for these flawed

mplementations. We hope our study can remind and guide devel-

pers of both merchants and cashiers to build more secure in-app

ayments. 
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