
The Journal of Systems and Software 140 (2018) 3–16

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

AppSpear : Automating the hidden-code extraction and reassembling

of packed android malware

Bodong Li ∗, Yuanyuan Zhang , Juanru Li , Wenbo Yang , Dawu Gu

Lab of Cryptology and Computer Security, Shanghai Jiao Tong University, Shanghai, China

a r t i c l e i n f o

Article history:

Received 25 March 2017

Revised 6 January 2018

Accepted 20 February 2018

Available online 21 February 2018

Keywords:

Android security

Code packing technique

Code unpacking

Malware detection

a b s t r a c t

Code packing is one of the most frequently used protection techniques for malware to evade detection.

Particularly, Android packers originally designed to protect intellectual property are widely utilized by

Android malware nowadays to hide their malicious behaviors. What’s worse, Android code packing tech-

niques are evolving rapidly with new features of Android system (e.g., the use of new Android runtime).

Meanwhile, unpacking techniques and tools generally do not respond to the evolving of packers immedi-

ately, which weakens the effectiveness of new malware detection.

To address the unpacking challenge especially for Android packers with advanced code hiding strategies,

in this paper we propose AppSpear , an automated unpacking system for both Dalvik and ART. AppSpear

adopts a universal unpacking strategy that combines runtime instrumentation, interpreter-enforced ex-

ecution, and executable reassembling to guarantee the hidden code is extracted and reconstructed as a

complete executable. Our experimental evaluation with 530 packed samples shows that AppSpear is able

to unpack protected code generated by latest versions of mainstream Android packers effectively.

© 2018 Elsevier Inc. All rights reserved.

1

p

d

p

r

L

r

m

p

t

2

m

t

f

v

e

t

s

l

l

t

o

t

m

p

t

p

n

D

s

d

t

p

a

t

t

c

h

0

. Introduction

Designed to protect the intellectual property originally, Android

ackers are abused by malicious Android app to evade malware

etection. According to a report of Symantec (2016) , the ratio of

acked malware has increased to 25% by August 2016. Worse still,

ecent Android malware analysis systems (Li et al., 2017; Wong and

ie, 2016; Mirzaei et al., 2017) often ignore packed malware. As a

esult, code packing has become a main obstacle against Android

alware analysis.

To tackle the packed malicious code, a series of unpacking ap-

roaches have been proposed to help security analysis. A major

arget of existing unpacking tools (Yu, 2014; Android-Unpacker,

014; Park, 2015) is to dump the Dalvik Executable (dex) data in

emory and recover the original dex binary file. To achieve this

arget, some tools (e.g., Android-Unpacker, 2014) adopt a straight-

orward strategy to directly search dex file in memory. More ad-

anced tools such as DexHunter (Zhang et al., 2015) and Pack-

rGrind (Xue et al., 2017) recover the dex file by monitoring

he process of code releasing to collect relevant information. More

pecifically, DexHunter monitors the class loading process to col-
∗ Corresponding author.

E-mail address: uchihal@sjtu.edu.cn (B. Li).

n

s

g

ttps://doi.org/10.1016/j.jss.2018.02.040

164-1212/© 2018 Elsevier Inc. All rights reserved.
ect dex related data, and PackerGrind defines multiple data col-

ection points to conduct a more comprehensive recovering.

Unfortunately, packers are evolving to thwart such unpacking

ools. Countermeasures such as loading dex into dispersed mem-

ry regions, wiping or modifying part of dex are introduced to in-

erfere with straightforward memory dump based unpacking: the

alformed dex cannot be analyzed or dumped, making these un-

acking tools unworkable. Some packers may even actively detect

he unpacking behaviors and evade them. For instance, the Ijiami

acker (Ijiami, 2017) adds some destructive classes into the origi-

al dex . When these classes are initialized by unpackers such as

exHunter , the packed app detects the unpacking behavior and

tops execution.

Another issue for unpacking is the new execution model of An-

roid. The prevalence of Android Runtime (ART) (Android Statis-

ics and Facts, 2017) also leads to the upgrade of most Android

ackers. Since ART keeps two versions of code (a native version

nd a dex bytecode version), packers could permanently encrypt

he dex bytecode version and only release the native version. In

his situation, existing unpacking tools cannot deal with the en-

rypted bytecode in ART.

To study systematically Android code packers especially those

ew features against existing unpacking tools and propose corre-

ponding new unpacking technique, we first conducted an investi-

ation on 47,962 Android malware samples collected from 2012 to

https://doi.org/10.1016/j.jss.2018.02.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.02.040&domain=pdf
mailto:uchihal@sjtu.edu.cn
https://doi.org/10.1016/j.jss.2018.02.040

4 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

d

w

i

t

r

c

2

t

t

i

(

t

e

d

u

d

c

t

t

D

s

c

2

p

b

v

fi

i

c

t

d

l

a

m

t

t

t

t

i

D

2

c

t

m

c

s

t

e

D

a

i

n

d

m

m
2017, which contain 3258 packed samples and cover eight popu-

lar commercial Android packers. Through analyzing these samples,

we summarized and classified the code packing techniques into

four types: dex protection, native protection, memory protection and

code release protection . Specially, we find many new advanced pro-

tections (i.e., code release protection) and no existing unpacker can

solve them effectively.

Following the summarized features of mainstream Android

packers, in this paper we propose AppSpear , an automated Android

unpacking system for both Dalvik and ART. AppSpear adopts a

universal unpacking strategy that combines runtime instrumenta-

tion, interpreter-enforced execution, and executable reassembling.

Through a runtime instrumentation of both Dalvik VM and the

Fallback interpreter of ART, AppSpear collects dex data from Dalvik

Data Structs (DDS), which always provide accurate data. In addi-

tion, AppSpear enables an interpreter-enforced execution to force

the releasing of all bytecode in ART. Since the native execution

mode of ART only needs native code that compiled from the orig-

inal dex bytecode, packers could encrypt the original bytecode af-

ter the compilation. To enforce the releasing of the bytecode in

ART mode, AppSpear inserts an execution converter into ART to

enable the interpretive execution for each method. Therefore, the

original bytecode of the app is released and the collected DDS is

accurate. Finally, AppSpear reassembles the collected DDS into a

complete dex file, and this dex file can be sent to state-of-the-art

static code analysis tools for further analysis.

To validate the effectiveness of AppSpear , we choose two sets of

apps and conduct unpacking test. The first set of apps are 30 open-

source apps from F-Droid (2017) . The selected apps are packed

by six mainstream packers, respectively. Then the 180 samples are

sent to AppSpear for dex recovering. The second set are 350 rep-

resentative packed malware. The results show that AppSpear re-

covered dex files successfully in both Dalvik and ART. With the

ground truth built by the first set of packed samples, we verified

that the unpacking results of AppSpear are accurate. More interest-

ingly, we found that malicious behaviors of the malware samples

were easily detected after the unpacking. This demonstrated that

AppSpear can enhance existing malware detection significantly.

This paper makes the following contributions:

• With an investigation on 3258 packed malware samples, we

summarize typical code packing techniques of Android pack-

ers especially a number of advanced protections that are not

studied before. All protections are classified into four types:

dex protection, native protection, memory protection , and code

release protection . Among them, code release protection reflects

new challenge to all known unpacking tools.
• We propose AppSpear , a universal and automated Android un-

packing system for both Dalvik and ART. AppSpear can handle

all four kinds of code protections effectively. Particularly, AppS-

pear is the first unpacker to tackle the bytecode hiding protec-

tion within ART mode.
• We evaluate AppSpear with two sets of packed samples. The

results show that AppSpear conducted successful unpacking

against code protected by mainstream Android packers, while

existing unpacking tools such as Android-unpacker and Dex-

Hunter cannot handle a large portion of them.

2. Execution model of android

2.1. Android app

Android apps are mainly written in Java , C/C ++ is also sup-

ported with Java native interface (JNI) to interact with apps and

framework. When developing an app, developers compile Java
source code into bytecode with the javac tool and convert it to
ex bytecode with the dx tool. With other resources, the dex file

ill be zipped into an application package (.apk) file. During the

nstallation of app, Android OS conducts further compilation or op-

imization locally. Then, the app will be executed within a specific

untime (Dalvik or ART), and each instance runs as an isolated pro-

ess.

.2. Dalvik VM

Dalvik virtual machine (Dalvik, 2017) (Dalvik VM) is a discon-

inued process virtual machine in Google’s Android operating sys-

em that executes applications written for Android. Dalvik VM is an

ntegral part of the Android software stack in Android versions 4.4

KitKat) and earlier. While an app’s installation, Dalvik can use a

ool called dexopt to transform the dex file into optimized Dalvik

xecutable (odex) file. During the execution, Dalvik interprets the

ex bytecode. To improve performance, Dalvik also features mod-

lar interpretation and just-in-time compilation.

Dex file is the executable of Dalvik. It’s composed of certain

ata sections (Dexformat, 2017), including header , method_id ,
lass_def , data and so on. Dalvik loads the dex file and parses

hese data sections into corresponding data structs during the run-

ime. These data structs are defined as Dalvik Data Structs (DDS).

alvik utilizes these DDS to execute the app. Although the data

ections of dex file would be tampered by packers, DDS are cru-

ial data for execution and always give accurate data.

.3. Android runtime

With the release of Android 5 (Lollipop), Google thoroughly re-

laced Dalvik with Android Runtime (ART). Unlike the interpreter-

ased Dalvik, ART is a compilation based runtime, which pro-

ides significant performance improvement for Android apps. It

rst adopts ahead-of-time compilation to transform dex bytecode

nto native (platform specific) code and then executes the native

ode. During the installation, ART handles the dex file, which con-

ains dex bytecode compiled from Java source code. ART uses a

ex2oat compiler to produce an oat format executable, and then

oads it for execution. In addition, necessary classes in boot path

re also compiled and pre-initialized to a boot.art file, then

apped into memory during the boot process of the OS. Therefore,

he execution is mainly based on compiled native code.

Oat file is a kind of ELF file, but contains two special data sec-

ions: oat data section and oat exec section. Oat data section contains

he whole dex file and oat exec section contains the compiled na-

ive code. When ART loads the oat file into memory, the dex file

n it is also parsed. Therefore, ART also maintains the same DDS as

alvik does.

.4. Fallback interpreter in ART

Notice that even for the latest version of ART, some dex byte-

ode is still not able to be complied. Hence the interpretation func-

ionality is still reserved for specific cases. There are some specific

ethods which are only handled by the interpreter (Dalvik Exe-

utable Format, 2017). The main reason is that some mechanisms

uch as garbage collection, JNI, stack size, and bytecode verifica-

ion are difficult to be compiled correctly using ART compiler. For

xample, ART verifies bytecode more strictly at install time than

alvik does. Bytecode, which contains invalid control flow, unbal-

nced moniterenter/moniterexit , or 0-length parameter type list size ,

s not able to be handled by ART and thus cannot be compiled into

ative code. In this case, the Fallback interpreter is adopted. In ad-

ition, ART does not compile the code of native methods, abstract

ethods, and static methods. Instead, ART executes these kinds of

ethods in the interpreter directly. As a result, the oat file still

B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16 5

Fig. 1. The ratio of packed Android malware in our experimental samples collected

from 2012 to 2017.

Fig. 2. Distribution of packers used by packed malware.

c

a

H

s

3

u

c

t

p

p

(

r

4

m

y

p

A

A

2

t

b

c

e

u

p

a

Fig. 3. Process of packed app’s production and execution: (1) The packer encrypts

the entire dex file and hides it into .so library. (2) When app starts, the packer

program invokes the decryption stub in .so library at first. (3) The decryption stub

decrypts the encrypted dex file in the next. (4) The original dex is released and

executed at last.

c

a

f

p

m

t

3

a

v

a

a

fi

d

.

g

e

c

a

i

A

p

r

w

3

a

a

r

2

w

s

i

s
ontains the entire dex bytecode. For each method in oat , there

re two implementations: a native version and a bytecode version.

ence besides the compilation based execution mode, ART also

upports interpretive execution mode.

. Code packing technique

In this section, we summarize Android code packing techniques

sed by different packers. To understand Android packers and their

ode packing techniques, we conducted a large-scale investiga-

ion on 47,962 malware apps from 2012 to 2017, and found 3258

acked apps from all malware samples. After investigating those

acked malware, we found seven new code packing techniques

details in Section 3.4), which have not been discussed by existing

esearches.

Figs. 1 and 2 show the details of our investigation. Among

7,962 malware apps collected from 2012 to 2017 (we collected

ost malware from the (Sanddroid, 2017) online Android app anal-

sis system and the other ones from the wild), we obtained 3258

acked apps with signature matching. By learning eight popular

ndroid packers (i.e., Bangcle, 2017; Ijiami, 2017; Qihoo360, 2017;

libaba, 2017; Baidu, 2017; Naga Security, 2017; Netqin Security,

017 , and APKProtect 1), we built a database of packers’ signa-

ures. In particular, we use the unique native .so library brought

y each packer as its signature.

As Fig. 1 shown, the ratio of packed malware increases signifi-

antly year by year. Fig. 2 shows the distribution of different pack-

rs used by malware. Among all packers, Bangcle is the most pop-

lar one, which corresponds to its market share in Android code

rotection field.
1 APKProtect is an obsolete Android packer, which has closed its packing service

lready.

p

d

n
By analyzing packed malware manually, we summarized all the

ode packing techniques. With the frequent evolution of the packer

nd the adoption of ART, seven new advanced techniques were

ound that challenge existing unpackers. We then classified all code

acking techniques into four types: dex protection, native protection,

emory protection , and the recently emerged code release protec-

ion .

.1. Dex protection

Early Android packers only protect the dex file. Fig. 3 shows

 production and execution process of the packed app. To pre-

ent dex file from being decompiled by automated tools such as

pktool (2017) , Android packer firstly encrypts the entire dex file

nd hides it into a .so file. Then the packer adds an extra dex
le, which contains the packer program. At last, the .so file, extra

ex file, and original resource files will be combined into a packed

apk file. When the packed app starts to execute, the packer pro-

ram invokes the decrypting stub in the .so file and decrypts the

ncrypted code dynamically. Then Dalvik VM or ART loads the de-

rypted dex with the help of DexClassLoader and executes it

t last.

Although dex protection prevents the decompilation effectively,

t has a major weakness: the protection of native .so file is weak.

n analyst can conduct a code reverse engineering to decrypt the

acked app manually. For the same packer, the decryption algo-

ithm is similar. The analyst can also design a static unpacker

hich decrypts packed apps automatically in quantities.

.2. Native protection

To resist manual analysis and static unpackers, Android packers

dopt native protection . Packers protect the native .so file in three

spects: 1) the packer changes cipher key and encryption algo-

ithm periodically, which increases the cost of analysis obviously;

) an expansive code obfuscation is added to the native .so file,

hich causes an explosion of code logic and hinders static analy-

is significantly; 3) an extra packer is added to the native .so file,

.e., the native .so file will also be encrypted entirely. In a word,

tatic unpacking technique cannot handle the frequent evolution of

ackers with dynamic code encryption/decryption.

In comparison, the original bytecode is still able to be dumped

irectly from memory using dynamic analysis. No matter how the

ative .so file is protected, during the execution the original dex

6 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

Fig. 4. Code release points in ART. The figure shows the process of parsing an oat
file in ART. Packer’s code release points are marked: (1) compiling bytecode (2)

parsing oat file (3) loading classes (4) loading methods.

3

t

t

p

B

c

s

r

3

p

c

d

F

v

T

3

p

t

s

a

s

A
is decrypted and loaded into memory. Hence many unpackers find

the decrypted dex data by searching the magic number of dex
(“dex.035” or “dex.036”). Besides, the analyst can obtain the de-

crypted dex data by monitoring the process of optimization or

compilation. After an .apk file is installed, dex file will be op-

timized into odex file in Dalvik and be compiled into oat file

in ART as mentioned in Section 2 . Most packers start to work

only after the Android system completes this process. By patch-

ing Android system’s optimization tool (dexopt) or compilation

tool (dex2oat), the analyst can obtain the original dex directly.

Another valid method is system interface hooking. By hooking the

system interfaces for opening a dex file or oat file (dvmDex-

FileOpenPartial in Dalvik or OatFile::Open in ART), the decrypted

code can be obtained.

3.3. Memory protection

To resist memory dumping based unpackers, Android packers

utilize several countermeasures to protect the dex data in mem-

ory. We sum up them as follows:

3.3.1. Fake information

Data fields of dex file are crucial to static analysis while some

of them are less relevant to dynamic execution. Packers may mod-

ify the contents of this kind of data fields to trick unpackers. This

modification often confuses unpackers to dump incorrect data from

memory. For instance, data fields of DexHeader DDS are often

modified by packers:

• magic : As mentioned in Section 3.2 , the magic number can be

used to locate the start point of dex file. Modifying the magic

increases the difficulty of searching dex file.
• fileSize : This data field gives the size of dex file. With-

out this important information, unpackers have to make a deep

analysis of dex file’s structure to collect complete dex data.

Data fields in DexMapList DDS can be tampered to confuse

unpackers as well. DexMapList is always used to locate other

DDS by static analysis tools. But Android system does not need the

information in DexMapList . Wrong data in DexMapList would

not impact the normal execution. Therefore, some packers tamper

DexMapList to confuse unpackers and guarantee app’s normal

execution as well.

3.3.2. Dispersed code

Some packers release decrypted dex data into dispersed mem-

ory regions, which makes the dumped dex data incomplete

and malformed. Since DexCode DDS contains dex bytecode di-

rectly, most packers give them more protections. Packers would

load DexCode into dispersed memory regions and change rel-

evant pointers into exceptional data (i.e., a number larger than

dex file size, a negative number, or zero). While the initializa-

tion of each Java class, the packers repair the changed point-

ers in DexClassData , then the system can find each dispersed

DexCode in memory.

3.3.3. Environment detection

Packers usually detect the execution environment to prevent

unpackers from dumping the real code.

• Emulator detection : Since most dynamic analysis tools are based

on Android emulator or virtual machine. Packers will check

whether the packed app is running in a real mobile device.

Most packed apps refuse to execute in an emulator or a virtual

machine.
• Anti-debugging : Some unpackers work as debuggers that attach

to the process of the packed app and obtain the bytecode dur-

ing the execution. The packer would stop the debugger to at-

tach through invoking some system interfaces (e.g., ptrace) be-

forehand.

.4. Code release protection

Since unpackers can still obtain the actual bytecode by moni-

oring the code release stage of the app dynamically, memory pro-

ection is not adequate for hiding the information. Therefore, new

ackers utilize a code release protection to impede the unpacking.

y analyzing the latest packed samples, we revealed how latest

ode packing techniques protect real code during the code release

tage. As far as we know, no existing unpackers can handle code

elease protection effectively.

.4.1. Code release points in ART

With ART’s popularity, most packers start to support ART code

acking. Due to the differences in design, ART compiles and exe-

utes code in a completely different way from Dalvik. Packers need

esign specialized mechanisms for code’s decryption in ART. As

ig. 4 shown, packers select different code release points to pre-

ent this behavior from being monitored by unpackers uniformly.

hey usually release actual code on the following four occasions:

• Compiling Bytecode : During an .apk file’s installation, dex file

will be compiled into oat file. Some packers utilize dex2oat
in system to compile bytecode, and they select to release real

code before the compilation.
• Parsing Oat File : An oat file will be parsed into the OatFile

struct in ART. Some packers select OatFile::open() as the code

release point.
• Loading Classes: ClassLinker::LoadClass() is used to load class

data and parse class data into the Class struct. It’s also used

as a code release point.
• Loading Methods : ART uses the ArtMethod struct to represent

each Java method. Some packers release each method’s code

when ClassLinker::LoadMethod() is invoked.

.4.2. Bytecode hiding in ART

Sometimes packers do not release all code at the code release

oints mentioned above, they would hide some bytecode until

hey are actually executed. Unlike Dalvik, ART maintains two ver-

ions of code (native code and dex bytecode) for each method. In

 normal execution, native code is executed by default. As Fig. 5

hown, if method A wants to invoke method B (case 1), A finds

rtMethod B struct at first, then A fetches B ’s native code and

B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16 7

Fig. 5. Bytecode hiding in ART. Case 1 and Case 2 show that dex bytecode is hid-

den during normal executions in ART. Case 3 shows that hidden dex bytecode is

released before an interpretive execution.

e

a

s

i

d

f

w

d

t

c

a

a

h

3

v

a

fi

m

e

e

Fig. 6. The 1st example of stepwise code release: While parsing oat file, the

packer releases dex data but replaces instructions with NOP (LEFT). When De-

fineClass() is invoked, the packer just releases the real instructions (RIGHT).

Fig. 7. The 2nd example of stepwise code release: The packer moves the real code

of onCreate() into onCreate001() and inserts two stubs: A.d() and A.e() into onCre-

ate() . The packer hides the real code until A.d() is invoked and re-encrypts the code

just after A.e() is invoked.

Fig. 8. Destructive code: (1) Code on the left contains an empty static filed named

a and an empty static method also named a . When JEB parses the code, the bugs

of JEB would make it to crash. (2) The class on the right contains System → exit() in

its constructor. The app would exit while the initialization of this class.

3

w

c

3

m

A

n

M

p

I

a

m

xecutes it next. Considering the Ahead-of-time (AOT) compilation

nd function inlining of ART, when B is a system method or a

imple method (case 2), it can even be invoked by address jump-

ng directly without accessing ArtMethod struct. In these cases,

ex bytecode would never be invoked. Some packers utilize this

eature and keep bytecode encrypted during the execution. Only

hen methods are executed in an interpretive mode (case 3), hid-

en code would be just decrypted. When A calls B , packers release

he bytecode at first, then the interpreter executes the decrypted

ode. In this case, packers select DoInvoke() in Fallback interpreter

s the code release point. All existing unpackers would not change

pp’s execution mode, thus they would fail to obtain the real code

idden by packers in ART.

.4.3. Stepwise code release

Releasing code in multiple steps is also used by packers to pre-

ent the unpacker to obtain the entire code. When the packed

pp starts to run, only part of the dex data is decrypted in the

rst code release step. Some important data (e.g., instructions of a

ethod) would be decrypted just before its execution. Some pack-

rs would even re-encrypt it after its execution. Here we give two

xamples:

• Further code release while DefineClass() : As Fig. 6 shown, in the

first code release, the packer releases the original dex data,

but replaces all methods’ instructions with fake instruction NOP
(opcode:0x00). A method’s real instructions are hidden until

this method’s class object is initialized.
• Further code release and re-encryption at inserted stubs : As Fig. 7

shown, the packer inserts two stubs into onCreate() and keeps

its real code encrypted while the first code release. When the
first stub is invoked, the packer decrypts the real code. When

the second stub is invoked, the packer would re-encrypt it.

.4.4. Destructive code

Some packers add destructive code into the original dex data,

hich interferes some static and dynamic analysis tools and in-

reases the difficulty of unpacking:

• destructive code against static analysis : Static analysis tools have

different ways to parse dex data and some bugs may exist

in their implementations. Packers insert some code to trig-

ger these bugs. Even if the dex file is unpacked, it would

not be analyzed by static analysis tools. Fig. 8 shows packer

Alibaba (2017) ’s destructive code (code on the left) which can

make Jeb (2017) to crash.
• destructive code against dynamic analysis : Since some packers

select to release code while class initializations, they inject

some classes which can’t be initialized to prevent packers from

initializing all classes uniformly. These destructive classes will

never be invoked in an app’s normal execution, but once be

initialized, the app will exit. Fig. 8 shows a destructive class we

found in packer (Ijiami, 2017) (code on the right).

.4.5. Native method cheating

Packers sometimes disguise a normal method as a native

ethod to cheat unpackers. By setting the access_flags of

rtMethod to ACC_NATIVE , packers make the methods look like

ative ones without changing bytecode into native code actually.

eanwhile, the code_off is also set as 0 . Fig. 9 gives an exam-

le of native method cheating used by the Alibaba (2017) packer.

f the “native” method is invoked, the packer will revise the

ccess_flags and code_off to make it back to a normal

ethod.

8 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

Fig. 9. Native method cheating: The method is disguised as a native method (code

on the left). It would be changed back to a normal method after its class object is

initialized.

r

e

a

4

c

A

(

o

c

l

s

c

t

fl

S

E

t

s

p

c

i

T

t

i

e

h

w

i

b

m

t

t

s

m

l

l

W

e

e

l

h

t

D

4

t

m

d

c

t

u

e

t

t

D

t

p

s
3.4.6. Time checking

We also find time-out checking mechanism added by packers to

prevent unpackers from monitoring code release. If the unpacking

process introduces an obvious overhead, packers would terminate

the execution due to the delay.

3.4.7. Class loader replacement

Packers may use their own class loaders to load classes. In

this situation, an unpacker cannot monitor the real class loading

through hooking the relevant system interfaces. Hence the actual

code release is protected.

4. AppSpear

In this work, we present AppSpear , a universal and automated

unpacking system. AppSpear is designed for both Dalvik and ART,

and it effectively handles all the code packing techniques men-

tioned in Section 3 . As far as we know, AppSpear is the first un-

packing tool that is able to handle all latest protections of main-

stream Android packers.

The design of AppSpear needs to address two main challenges:

1) how to overcome kinds of code packing techniques and guaran-

tee its generality. 2) how to obtain dex bytecode from ART which

is based on native code execution. To address the first challenge,

we make use of Dalvik Data Structs (DDS) to obtain accurate dex
data and dex re-writing technique to recover the original dex
file. DDS are important data structs maintained by Android system.

When an app is executed in Dalvik VM, the dex file will be parsed

for initializing the DexFile struct and then the DexFile struct

will be transformed into a series of DDS for further execution. Al-

though ART does not rely on interpretive execution, it still reserves

DDS in its Fallback interpreter as mentioned in Section 2.4 . Since

the execution of an app directly depends on DDS, AppSpear con-

ducts a DDS based unpacking to circumvent protections of pack-

ers and guarantees the accuracy of unpacking against intentional

code modification of packers. Then AppSpear re-writes the dex file

through reassembling the collected dex data to avoid being con-

fused by fake information generated by the packer.

For the second challenge, we add an execution converter into

ART to switch each method’s execution into interpretive mode,

which helps AppSpear overcome the issue of bytecode hiding in ART

(Section 3.4.2). In the interpretive mode, ART is forced to execute

dex bytecode, and thus the packer will release the encrypted byte-

code. Then AppSpear could retrieve the released bytecode.

Fig. 10 depicts the overall unpacking process of AppSpear . In de-

tail, AppSpear employs the unpacking through three main steps:

bytecode recovering (in ART), DDS collecting and DDS reassem-

bling. We provide two environments for unpacking: an instru-

mented Dalvik VM and an instrumented Fallback interpreter of

ART. The first step is only performed in ART to solve the second

challenge mentioned above. We design an execution converter to

switch the execution of ART into interpretive mode, which guaran-

tees the real bytecode to be released in ART. Then in the second

step, AppSpear collects dex date from DDS uniformly in two en-

vironments. At last, AppSpear reassembles the collected dex data

into a new dex file. Our dex re-writing technique guarantees the
eal code’s integrity and removes destructive code added by pack-

rs. The new dex file is then able to be analyzed by most Android

pp analysis tools and can also be repackaged into an apk file.

.1. Bytecode recovering in ART

To recover original dex data in ART is more difficult and

hallenging than in Dalvik. ART maintains each method with

rtMethod struct. ArtMethod contains two versions of code

native code and dex bytecode). The bytecode comes from the

riginal dex file and the native code is generated from the byte-

ode while the app’s installation. To invoke a method, ART uti-

izes a native invoking stub to find the method’s ArtMethod
truct, then obtains the method’s native code. Under normal cir-

umstances, only native code is executed in ART, which makes

he bytecode easier to be hidden. Accordingly, packers have more

exible strategies to protect bytecode in ART. As mentioned in

ection 3.4.1 , various code release points can be selected in ART.

ven packers can keep bytecode hidden during the whole execu-

ion (i.e., bytecode hiding in ART mentioned in Section 3.4.2). They

et the bytecode release points into the entry of Fallback inter-

reter. Since Fallback interpreter is hardly used while normal exe-

utions, these release points are difficult to trigger. Bytecode hiding

n ART is challenging for dynamic unpacking in ART.

AppSpear uses an execution converter to address this challenge.

he execution converter can switch a method’s execution mode be-

ween native and interpretive. By setting all methods be executed

n the interpreter, the execution converter can force all bytecode be

xecuted in ART. No matter how packers protect the bytecode, they

ave to release the code before the interpretive execution. In this

ay, the execution converter guarantees all bytecode to be released

n ART.

The execution converter switches each method’s execution mode

y changing the entry points of method. As Fig. 11 shown, a

ethod in ART has four entry points: two for interpretive invoca-

ion and two for native invocation. The default entry points lead

he method into native execution (the blue lines in Fig. 11). By

witching each method’s entry points, the execution converter can

ake ART to execute dex bytecode (the green lines in Fig. 11).

Fig. 12 shows how the execution converter works. After ART

oads the oat file, it does some preparations (i.e., loading class,

oading method, linking code, etc.) before the following execution.

hile the period of linking code, the execution converter changes

ach method’s execution into interpretive mode. This leads the ex-

cution flow into the Fallback interpreter. Then the bytecode re-

ease points at the entry of interpreter would be triggered and the

idden code would be decrypted and released. In this way, execu-

ion converter makes the bytecode released and helps the following

DS collecting in ART.

.2. DDS collecting

AppSpear collects DDS and retrieves accurate dex data from

hem to reassemble unpacked dex file. Other existing unpackers

ainly obtain the real code from data in memory or high-level

ata struct (e.g., DexFile). However, packers usually hide real

ode in memory and tamper the data in DexFile struct. Although

he real code would be released before execution, it is difficult for

npackers to decide the time of unpacking due to packers’ differ-

nt code release occasions. As essential elements of app execu-

ion, DDS always provide more accurate data. Since Android sys-

em obtains the code to be executed directly through DDS, most

DS must be kept accurate to guarantee the stability of the execu-

ion. Although part of DDS are still possible to be tampered, AppS-

ear can pick them out and abandon the trustless data. In addition,

ince DDS are a group of independent data structs, the process of

B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16 9

Fig. 10. An overview of AppSpear ’s unpacking process.

Fig. 11. Entry points of method in ART. The figure shows 4 entry points of method

in ART. The native code is executed by default (blue lines). The execution converter

of AppSpear makes ART to execute bytecode by changing entry points of method

(green lines). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Fig. 12. Execution converter of AppSpear . The figure shows how the execution con-

verter works. When the period of linking code, the execution converter switches all

methods’ execution mode and leads the execution flow into Fallback interpreter.

c

c

d

4

t

D

t

T

D

a

D

D

A

t

c

Fig. 13. DDS Accessing: AppSpear collects DDS from IDDS’ data offsets (blue lines),

and abandons the trustless data in DexMapList and DexHeader (red lines). (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

a

p

4

a

D

e

i

b

D

D

s

s

p

M

c

a

t

a

p

ollecting DDS is flexible. AppSpear can collect DDS at different oc-

asions to avoid omission. Therefore, AppSpear selects to retrieve

ex data from DDS to guarantee its accuracy and integrity.

.2.1. DDS classification

Both Dalvik and ART maintain 18 kinds of DDS. We classify

hem into two types: the index DDS (IDDS) and the content

DS (CDDS). The IDDS are used to index the real offset of

he CDDS, and the CDDS store the detailed bytecode data.

he IDDS include DexHeader , DexStringId , DexTypeId ,
exProtoId , DexFieldId , DexMethodId , DexClassDef ,
nd DexMapList . And the CDDS include DexTypeList ,
exClassData , DexCode , DexStringData , DexDebugInfo ,
exEncodedArray and four items related to Annotation. Since

nnotation relevant DDS are seldom related to program’s func-

ionality and thus are less important for program analysis. On the

ontrary, DexCode is the most important one, which contains
ll the bytecode instructions directly. Packers usually give extra

rotections to it.

.2.2. DDS accessing

As Fig. 13 shown, the hidden dex file would be decrypted

nd parsed into DexFile struct at first. Notice that the data in

exFile struct would be intentionally modified by packers. For

xample, the data offsets in DexMapList DDS are likely tampered

nto false data (red lines in Fig. 13). And the real CDDS data would

e released into dispersed spaces in memory (blue lines in Fig. 13).

AppSpear accesses DDS in following steps: We first access

exFile struct through Method → clazz → pDvmDex → pDexFile in

alvik and ArtMethod → GetDexFile in ART. Then, from DexFile
truct, we obtain certain IDDS’ pointers. These IDDS are fixed size

tructs thus we can obtain their complete data according to their

ointers and fixed sizes. Here we abandon IDDS DexHeader and

apList directly. At last, we traverse all attributes of IDDS to

ollect accurate offset of CDDS. We need further access the size

ttribute of each CDDS to determine their real sizes. Notice that

he DexFile struct also contains pointers of CDDS, but we avoid

ccessing them directly because of the potential modifications of

ackers. We show the detailed attributes we used in Fig. 14 .

10 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

Fig. 14. Detailed attributes we used to access the data content of DDS.

Fig. 15. Process of DDS collecting.

D

c

f

p

t

n

a

fi

m

s

(

c

w

A

l

w

w

i

C

A

v

i

w

c

s

t

e

(

A

t

t

D

I

n

(

fi

t

t

t

t

u

D

t

A

a

n

t

g

a

w

s

i

s

t

o

r

c

A

2

c

4.2.3. The process of DDS collecting

The process of DDS collecting is shown in Fig. 15 . We give the

details by steps:

(1) Setting entry point method. We first decide the certain point of

execution (denoted as unpacking point) to start our DDS collect-

ing. AppSpear performs instruction-level instrumentations in both
alvik and ART. By monitoring the INVOKE instruction, we could

hoose arbitrary point to perform collecting, which is significant

or fighting against self-modified packers. The default unpacking

oint is determined by the manifest file of app. We choose

he main activity as default unpacking point because packers are

ot allowed to modify the original four components in Android

lthough they can add new < application > to the manifests

le. Once the interpretation meets the main activity’s entry point

ethod (e.g. onCreate()), we try to access the DexFile struct and

tart the collection.

2) Collecting IDDS and initializing classes. At beginning, we first

ollect IDDS from DexFile struct. From the DexClassDef ,
e obtain the names of all classes in the original dex file.

s mentioned in Section 3.4 , packers adopt kinds of code re-

ease protections . According to our observation, real code is al-

ays released after the initialization of class. Therefore AppSpear

ould enforce to initialize all classes before our CDDS collect-

ng (by dvmDefineClass() in Dalvik, ClassLinker → FindClass() and

lassLinker → EnsureInitialized() in ART). While class initialization,

ppSpear needs to detect and bypass some special classes to pre-

ent crashes. As mentioned in Section 3.4.4 , some packers may

nject some destructive classes against dynamic analysis which

ould crash the app. In addition, normal classes with special static

ode would also cause a crash while enforced initialization, such as

tatic code for thread or dynamic loading operations. By checking

he static code of each class before the initialization, AppSpear can

ffectively bypass all special classes and destructive classes.

3) Collecting CDDS and checking DexCode. After class initialization,

ppSpear starts to collect CDDS. Up to now, we have collected all

he DDS. Considering that packers are likely to add extra protec-

ions to DexCode , AppSpear would check whether any collected

exCode contains illegal instructions (e.g. NOP) or no instruction.

f all the DexCode are regular, we would finish the collection. If

ot, we may add a further step to update the illegal DexCode .

4) Triggering illegal methods and updating DexCode. If AppSpear

nds any method lacking of code, it will feedback the informa-

ion to the analyst by system logs. Then the analyst tries to trigger

his method and AppSpear collects the corresponding DexCode in
he meanwhile. AppSpear also traces the executed instructions of

his method by instrumented stubs in Dalvik and ART. AppSpear

ses the traced instructions to check the accuracy of new collected

exCode . If the instructions in DexCode do not correspond to

hat in traces, it would be repaired using accurate result in traces.

t last, AppSpear updates the DexCode with new collected ones

nd finishes the DDS collecting.

Here the method trigger needs manual involvements. Fortu-

ately, there are only few methods that need to be triggered and

he process of triggering is not complex. According to our investi-

ation, these special protected methods are always few in number

nd inserted into the entries of app (onCreate() of each activity),

hich are easy to be triggered. Because packers do not have the

ource code of the original app. It’s really complex for packers to

nsert code decryption stubs deep into the program. And too many

pecial protected methods would bring more performance loss. Ac-

ually, we can trigger most special protected methods by manual

perations and Android Debug Bridge (adb) tool. Our experimental

esult in Section 6.1.1 also proves it. Considering the more complex

ases we would missed, AppSpear is also compatible with most

ndroid input generators (Wong and Lie, 2016; Choudhary et al.,

015; Mirzaei et al., 2016), which can help to increase our code

overage rate. We will further discuss this in Section 8 .

B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16 11

4

a

r

fi

t

4

s

t

f

s

a

i

e

n

s

4

o

i

t

m

t

t

fi

s

t

D

p

r

o

r

t

i

s

d

w

a

i

D

t

D

w

fi

t

4

a

r

d

c

t

m

f

w

o

4

m

c

n

a

t

S

m

c

f

w

f

p

c

i

o

c

b

t

c

f

e

w

t

p

t

a

t

i

S

t

t

w

A

s

c

c

p

r

s

c

w

c

t

b

t

c

c

n

t

i

u

H

b

r

b

d

m

(

S

a

.3. DDS reassembling

During DDS Reassembling, AppSpear resects destructive code

gainst static analysis, combines all DDS into a new dex file, and

ebuilds an unpacked .apk file in the last. The new generated dex
le and .apk file can be analyzed by most Android app analyzing

ools.

.3.1. Anti-analysis code resecting

As mentioned in Section 3.4.4 , packers would leverage bugs of

ome static analysis tools to inject destructive code that obstruct

he normal analysis but do not impact the normal execution. Be-

ore we rebuild a dex file, we resect these destructive code to help

tatic analysis at first. Since the destructive code is specific and

ims at certain analysis tools, it usually has obvious features and

s easily detected. We find them by class name checking. For the

xample on the left of Fig. 8 , we first locate it by its specific class

ame: “pnf.this.object.does.not.Exist”, then we check its code and re-

ect the redundant method a and field a .

.3.2. Dex rewriting

After resecting the destructive code, AppSpear combines the

ther DDS together. According to the order of dex items defined

n DexFile.h , we re-order the collected DDS and write them back to

he dex file in order.

During the rewriting, an important issue is the offset adjust-

ent. DDS maintain many pointers that point to other DDS and

he contents of these pointers are reloaded values that represent

he offsets at runtime. When this DDS is written back into dex
le, we should adjust this offset value to a new one that repre-

ents the actual offset in dex file. We check every pointer of DDS

o adjust this offset value when performing dex rewriting.

As mentioned in Section 4.2.2 , we abandon DexMapList and

exHeader while collection due to the possible modifications of

ackers. Therefore we need re-generate these two DDS while dex
ewriting. The entire DexMapList struct stores offsets and sizes

f other DDS, we re-calculate all metadata in DexMapList during

ewriting process. In addition, in case that the packer’s modifica-

ion of certain value, we directly use known knowledge to fill them

n DexHeader (e.g., size of file, magic number of header).

What’s more, during the dex rewriting, we should also con-

ider the type difference between dex file and DDS. First, in

ex file the data is 4-byte aligned. Thus during the rewriting,

e fill the gap with NULL byte if the size of DDS is not 4-byte

ligned. Second, in dex file the size attribute of DexClassData
s generally encoded in ULEB128, but its corresponding attribute in

DS is directly stored in a 32-bit variable. The rewriting should

ransform this 32-bit value with ULEB128 encoding. Finally, in

exClassData the id of method and field is the actual value, but

hen rewriting they should be adjusted into a relative offset to the

rst id in each DexClassData . We would automatically calculate

hese differences to generate a rewritten dex file.

.3.3. APK repackaging

In the end, we combine the reassembled dex file with materi-

ls from the existing packed app including manifests.xml and

esource files to repackage the app. The manifest file of an app

eclares the permissions and the entry points of the app. The de-

lared permissions are directly used in our repackaged app while

he entry points should be adjusted. Some packers may modify the

ain entry point to their decrypting stubs so that they could per-

orm dex decryption before the interpretation of interpreter. We

ould fix this entry point hijacking with the original entry point

f the dex file.
.4. Code packing technique solution

As a universal unpacking system, AppSpear can deal with most

ainstream Android packers without the detail of their code en-

ryption algorithms. It can solve all existing code packing tech-

iques mentioned in Section 3 effectively.

As a dynamic system, AppSpear obtains decrypted code while

pp’s execution. We do not worry about the complex statical pro-

ections: dex protection and native protection added by packers.

ince AppSpear monitors the code release by interpreter instru-

entations dynamically instead of dumping data from memory, it

an also evade memory protection . AppSpear can abandon fake in-

ormation (Section 3.3.1) while DDS collecting and re-generate it

hile DDS reassembling. Although the real data may be not dex-

ormated in memory due to dispersed code (Section 3.3.2), AppS-

ear can always find the real code by attributes of DDS. To cir-

umvent environment detection (Section 3.3.3) of packers, AppSpear

s designed to be deployed on a standard Android device instead

f an emulator. In addition, AppSpear adopts a transparent byte-

ode monitoring and retrieving based on Dalvik VM and ART Fall-

ack interpreter instrumentations. Since we monitor at an execu-

ion layer without changing the source code, it’s transparent to any

ode level detection. We also do not rely on system provided inter-

aces (e.g., ptrace) to perform debugging and monitoring, which is

asily detected by packers. Therefore, AppSpear provides a trust-

orthy analyzing environment.

AppSpear also performs well when resisting code release pro-

ection . AppSpear collects real code from DDS. No matter how

ackers perform code release in Dalvik or ART (Section 3.4.1),

he real code is always released while the initialization of DDS

s mentioned in Section 4.2 . This guarantees that we can obtain

he accurate data all the time. AppSpear solves bytecode hiding

n ART (Section 3.4.2) by the execution converter as mentioned in

ection 4.1 . It can change each method’s execution into interpre-

ive mode and enforce the bytecode to be executed. This guaran-

ees the hidden code to be decrypted in ART. AppSpear solves step-

ise code release (Section 3.4.3) from two aspects: On one hand,

ppSpear initializes all classes before the CDDS collecting (the 2nd

tep of DDS collecting in Section 4.2.3). This can trigger the further

ode release while DefineClass() . On the other hand, if a method’s

ode is still not decrypted after class initialization, AppSpear would

erform an additional step to trigger the method and collect its

eal code (the 4th step of DDS collecting in Section 4.2.3). For de-

tructive code (Section 3.4.4), AppSpear would check class’s static

ode and bypass the destructive code against dynamic analysis

hen class initialization in DDS collecting (the 2nd step of DDS

ollecting in Section 4.2.3). Then AppSpear would further resect

he destructive code against static analysis while DDS reassem-

ling (in Section 4.3.1). According to our observation, the fake “na-

ive” methods would be changed back to normal ones while their

lasses’ initializations. When AppSpear initializes all classes in DDS

ollecting, it solves native method cheating (Section 3.4.5) simulta-

eously. To evade time detection (Section 3.4.6), AppSpear utilizes

hreads to perform the time-consuming operations (e.g., collect-

ng, calculating, and saving data). The instrumented stubs are only

sed to monitor kinds of events, which provide ignorable overhead.

ere we select to create internal threads instead of normal threads

ecause normal thread is not allowed to attach some interpreter-

elated system functions. This guarantees that AppSpear would not

lock the main thread of app. Neither packers nor system would

etect any delay to exit the app. Since AppSpear does not rely on

onitoring the process of class loading, class loader replacement

 Section 3.4.7) would not impact our unpacking work. Instead, App-

pear starts its unpacking when the entry point method is invoked

s mentioned in the 1st step of DDS collecting (Section 4.2.3).

12 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

Table 1

Detailed interfaces used by AppSpear while DDS collecting.

Type DDS Dalvik ART

IDDS DexHeader Generated from collected data

DexStringId DexFile → pStringIds[i] DexFile → GetStringId(i)

DexTypeId DexFile → pTypeIds[i] DexFile → GetTypeId(i)

DexProtoId DexFile → pProtoIds[i] DexFile → GetProtoId(i)

DexFieldId DexFile → pFieldIds[i] DexFile → GetFieldId(i)

DexMethodId DexFile → pMethodIds[i] DexFile → GetMethodId(i)

DexClassDef DexFile → pClassDefs[i] DexFile → GetClassDef(i)

DexMapList Generated from Collected Data

CDDS DexTypeList dexGetProtoId → parametersOff ProtoId.parameters _ off_

dexGetClassDef → interfacesOff ClassDef.interfaces _ off_

DexClassData DexClassDef → classDataOff ClassDef.class _ data _ off_

DexCode DexClassData → directMethods[i].codeOff

DexClassData → virtualMethods[i].codeOff

DexStringData DexStringId → stringDataOff StringId.string _ data _ off_

DexEncodedArray DexClassDef → staticValuesOff ClassDef.static _ values _ off_

DexDebugInfo Annotation Ignored

f

n

S

d

A

s

6

D

s

B

2

A

s

6

a

T

t

d

w

fi

a

a

e

T

t

p

c

t

c

fi

p

c

a

t

a

w

e

t

2 class: pnf.this.object.does.not.Exist and class: z.z.z.z0 .
5. Implementation

We implement AppSpear in about 20,0 0 0 lines of

C ++ code, we have released the source code on

Github (Appspear Source Code, 2017). The implementation has

two parts: Dalvik version and ART version. In Dalvik, we add some

instrumenting stubs into dalvik/vm/mterp/out/InterpC-portable.cpp ,

in which there are many interpreting handlers for instructions.

These stubs can transparently monitor the methods’ execution and

trace executed instructions. To collect DDS, we select to use inter-

nal threads to avoid obvious delay by dvmAttachCurrentThread() .

The added threads can access the DexFile struct through

Method → clazz → pDvmDex → pDexFile . At the same time, we reuse

the Dalvik VM’s parsing functions in dalvik/libdex/DexFile.h as

Table 1 shows.

In ART, we first add an execution converter to dynamically

switch each method’s execution mode from native to interpretive.

The execution converter works when ClassLinker::LinkCode() is in-

voked. In the period of linking code, the execution converter links

all methods’ native entry points to GetQuickToInterpreterBridge()

and interpretive entry points to artInterpreterToInterpreterBridge ,

which guarantees that the control flow will go into the interpreter.

After certain method’s execution, the execution converter links this

method’s native entry point to its own native code entry (code off-

set in oat), and links the method’s interpretive entry point to art-

InterpreterToCompiledCodeBridge , which changes the method back

to native for less monitoring performance loss.

Similar to Dalvik, there are many interpreting handlers for

instructions in art/runtime/interpreter/interpreter _ switch _ impl.cc

and interpreter _ goto _ table _ impl.cc of ART. We also add some

instrumenting stubs into them to transparently monitor

the methods’ execution and trace executed instructions.

To collect DDS in ART, we also create internal threads by

art::Locks::mutator_lock_ → SharedLock() . We select to access

the DexFile struct through ArtMethod → GetDexFile in ART.

At the same time, we reuse the ART’s parsing methods in

art/runtime/dex _ file.h as Table 1 shows.

The deployment of AppSpear is simple. For Android sys-

tem version 4.4 and earlier, only the Dalvik VM’s library (/sys-

tem/lib/libdvm.so) is modified. For Android system version 5.0 and

later, only the ART’s library (/system/lib/libart.so) is needed to be

modified. Our implementation is compatible to various mainstream

Android devices.

6. Evaluation

We use 180 packed samples based on a set of open-source apps

from F-Droid (2017) (in Section 6.1) and 350 packed malware apps
rom Sanddroid (2017) (in Section 6.2) to evaluate the effective-

ess of AppSpear . We also validate the performance of AppSpear in

ection 6.3 . We deploy AppSpear on two devices: Nexus 4 with An-

roid OS 4.4.2 (Dalvik) and Nexus 5 with Android OS 5.0.1 (ART).

ll packed samples are then tested using these two devices, re-

pectively.

.1. Experiments with open-source apps

We randomly download 30 apps’ source code from F-

roid (2017) and build them into apps. Then we upload the apps to

ix online commercial Android packing services (i.e., Alibaba, 2017;

aidu, 2017; Bangcle, 2017; Ijiami, 2017; LIAPP, 2017; Qihoo360,

017) in December 2017 and obtain 180 packed apps. Then we use

ppSpear to unpack them in Dalvik and ART, respectively. The re-

ult is listed in Table 2 .

.1.1. Unpacking result

As Table 2 shows, AppSpear successfully unpacks all the packed

pps both in Dalvik and ART (Line “Success or Not in Unpacking”).

o check the correctness of our recovered dex files, we first parse

hem by static tool Baksmali (2017) and then compare the detailed

ex data (Java class, Java method, bytecode instruction, etc.)

ith the dex files of original apps. Finally, all the recovered dex
les are successfully parsed by baksmali without any exception,

nd each recovered dex file contains the exact classes, methods

nd instructions of the original app. The result demonstrates the

ffectiveness of our unpacking approach.

We also give the details while unpacking different packers in

able 2 . Line “Packer Added Class” shows the average number of ex-

ra classes added in each app. In details, the recovered dex files of

acker Alibaba , Baidu , and Ijiami contain extra Java classes. We

heck the extra classes and find that packers use them to perform

heir packer programs.

Line “Resected Class” shows the average number of destructive

lasses resected in each app. While DDS reassembling, AppSpear

nds and resects destructive code from recovered dex files of

acker Alibaba and Ijiami . Packer Alibaba adds two destructive

lasses 2 to trigger the bugs of JEB and dex2jar . Packer Ijiami

dds three destructive classes, which are named randomly, to exit

he app while the initializations of these classes.

Line “Additional Step” shows whether AppSpear performs an

dditional step (the 4th step in DDS collecting in Section 4.2.3)

hile unpacking. Line “Further Triggered Methods” shows the av-

rage number of methods that need to be triggered in the addi-

ional step. AppSpear can finish the unpacking after the first DDS

B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16 13

Table 2

Experiment on 180 packed apps generated from open source apps in F-Droid.

Alibaba Baidu Bangcle Ijiami LIAPP Qihoo360

D A D A D A D A D A D A

Success or Not in Unpacking � � � � � � � � � � � �

Packer Added Classes 59 59 62 62 0 0 5 5 0 0 0 0

Resected Classes 2 2 0 0 0 0 3 3 0 0 0 0

Additional Step × × � � × × × × × × × ×
Further Triggered Methods 0 0 6.44 6.44 0 0 0 0 0 0 0 0

D: Dalvik A: ART

Table 3

Code packing techniques used by different packers.

Alibaba Baidu Bangcle Ijiami LIAPP Qihoo360

Dex Protection � � � � � �

Native Protection � � � � � �

Fake Information � �

Dispersed Code � �

Environment Detection � � � � � �

Code Release Points in ART � � � � � �

Bytecode Hiding in ART � �

Stepwise Code Release � � � �

Destructive Code � �

Native Method Cheating �

Time Detection �

Class Loader Replacement �

c

b

t

a

O

W

l

t

t

s

b

s

s

s

e

t

h

i

6

t

p

o

w

W

6

p

U

u

i

W

S

w

T

A

s

a

h

n

v

D

t

o

i
ollecting for most packers. Due to the code release stubs added

y Baidu , AppSpear needs to perform an additional step to trigger

hese stubs and collect the missing code. Fortunately, Baidu only

dds code release stubs into onCreate() method of each Activity .
n average, each app has 6.44 methods that need to be triggered.

e force to start each activity by adb tool and trigger the code re-

ease stubs. Most activities are started normally. There are 4 excep-

ional activities which need to receive certain intent . Although

hese four apps exit while their activities are forced to start, we

till collect the missing code because the packer releases the code

efore the execution of the original code in onCreate() . Finally, we

uccessfully recover all samples of packer Baidu with an additional

tep of DDS collecting.

Table 2 shows the same results in Dalvik and ART. It demon-

trates that packers adopt similar protection strategies in two ex-

cution environments. However, there are still some differences in

heir code release process. For example, packer Alibaba and Qi-

oo360 perform a bytecode hiding in ART (Section 3.4.2), but not

n Dalvik.

.1.2. Analysis of used packers

Using AppSpear , we learn and sum up the detailed code packing

echniques used by each packer in Table 3 . In general, all the six

ackers perform strong dex protection, native protection , and mem-

ry protection , which invalidate the unpacking approaches by static

ays or memory dumping, and all packers have supported ART.

e give the details of each packer below:

• Bangcle, LIAPP These two packers adopt a full-code releasing

style. LIAPP releases code into continuous memory and Bang-

cle adopts a dispersed code release. AppSpear can collect all rel-

evant DDS just when the app is started.
• Ijiami . This packer adds destructive code against dynamic anal-

ysis, which would crash the app within their initializations. We

have given an example in Section 3.4.4 on the right of Fig. 8 .

Although these classes are randomly named, we can detect

them by checking the static code of each class as mentioned

in the 2nd step of DDS collecting in Section 4.2.3 . This packer

also adds a time detection while code release. We collect DDS
with internal threads to evade its detection as mentioned in

Section 4.4 .
• Alibaba . This packer adds destructive code against static anal-

ysis, which triggers the bugs of some static tools (e.g., JEB ,
dex2jar). AppSpear can resect it while DDS reassembling. This

packer not only hides real code with native cheating , but also

performs bytecode hiding in ART . As far as we know, AppSpear

is the only unpacking system which can solve it in ART.
• Baidu . This packer adopts a further code release with the stubs

added into the onCreate() method of each Activity class. An

example is showed in Section 3.4.3 (Fig. 7). AppSpear solves it

by an additional step of DDS collecting to obtain the specially

protected code.
• Qihoo360 . This packer adopts bytecode hiding in ART as well.

Bytecode is only released while interpretive executions in ART.

In addition, it makes a class loader replacement to prevent un-

packers from monitoring the process of class loading.

.1.3. Comparison with other unpacking tools

To further illustrate the effectiveness of AppSpear , we com-

are AppSpear with two representative unpackers: Android-

npacker (2014) and Zhang et al. (2015) . Android-unpacker is an

npacking tool based on dumping data from memory. DexHunter

s a general unpacker which is based on code release monitoring.

e use the two unpackers to unpack the same samples as App-

pear . Since DexHunter is also suitable for both Dalvik and ART,

e also deploy it on devices with different runtime environments.

he result is shown in Table 4 .

Due to the strong memory protections of modern packers,

ndroid-unpacker fails to solve all the packers. DexHunter can

olve packer Bangcle and LIAPP in both Dalvik and ART. It can

lso solve Alibaba in Dalvik but fails in ART due to the bytecode

iding in ART . All methods recovered by DexHunter in ART contain

o instructions for packer Alibaba . For Baidu , DexHunter pro-

ides incorrect data because Baidu adds fake information in DDS

exHeader . For Ijiami , DexHunter can not work normally due

o the time detection . For Qihoo360 , DexHunter provides code

f packer program instead of app’s real code, because DexHunter

s started by monitoring the class loading process, the packer re-

14 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

Table 4

Comparison with Android-Unpacker (2014) and DexHunter (Zhang et al., 2015).

Alibaba Baidu Bangcle Ijiami LIAPP Qihoo360

Android-unpacker × × × × × ×
DexHunter in Dalvik � × � × � ×
DexHunter in ART × × � × � ×
AppSpear in Dalvik � � � � � �

AppSpear in ART � � � � � �

Table 5

Experiment on 350 packed malware. Row “Packed” (and “Unpacked”) shows the average number of sensitive behaviors in

the dex file before (or after) AppSpear ’s unpacking.

Packer Alibaba APKProtect Baidu Bangcle Ijiami Naga NetQin Qihoo360 Total

Number of Samples 50 50 50 50 50 10 40 50 350

Packed 0.00 13.64 0.00 6.35 0.88 0.00 5.00 5.00 4.27

Unpacked 86.54 21.36 94.64 113.59 95.04 34.10 85.45 69.74 81.69

o

A

d

D

s

a

c

t

t

s

p

s

p

i

i

i

t

t

u

s

e

p

s

t

p

7

p

R

E

t

p

b

c

s

p

w

f

t

2

m

p

p

d
places the original ClassLoader which confuses DexHunter .

Compared with them, AppSpear can successfully solve all packers

which proves our effectiveness and applicability.

6.2. Experiments with packed malware

To further evaluate AppSpear ’s effectiveness and examine

whether AppSpear helps malware analysis, we conduct an exper-

iment on 350 packed malware of different packers, which are se-

lected from 3258 packed samples of our investigation in Section 3 .

We specially select the samples that can be executed in both

Dalvik and ART. The number of samples for each packer is shown

in Table 5 .

We run the packed samples in Dalvik and ART with AppS-

pear , respectively. All the samples run normally and we success-

fully obtain 700 recovered dex files (350 for Dalvik and 350 for

ART). We first use five popular static tools (i.e., DEXTemplate for

010Editor, 2017; Baksmali, 2017; Enjarify, 2017; IDA Pro, 2017 and

AndroGuard, 2017) to validate the recovered dex files. All the 700

recovered dex files are successfully parsed by these five tools.

Since we do not have the source code, we compare the dex of

Dalvik version with that of ART version. We found two versions of

dex files contain the same code.

We further implement an in-depth static sensitive behavior

analysis tools based on AndroGuard (2017) . The tool can count

the number of malware’s sensitive behaviors before and after un-

packing. Our tool simply regards the sensitive API calls as sensitive

program behaviors (referring to the map of API and permissions in

AndroGuard (Api permissions.py, 2017)).

The analysis results are shown in Table 5 . From the table, we

can see that most malware contain few sensitive behaviors before

unpacking. Specially, malware packed by APKProtect show the

most sensitive behaviors before unpacking. Because APKProtect

adopts a part-encryption strategy, part of the original code is ex-

posed even before the unpacking. Every sample packed by NetQin

or Qihoo360 has 5 sensitive behaviors before unpacking. This is a

coincidence because the two packers’ packer program both contain

5 sensitive API calls. However, all the samples show more sensitive

behaviors after unpacking. Each sample has 77.42 more sensitive

behaviors on average. It proves that AppSpear can effectively help

the malware analysis.

6.3. Performance

AppSpear tries to keep well balance between performance and

functionality. On the premise of unpacking work, we do not af-

fect the app’s execution as far as possible. No obvious lags are felt

and no app behaves abnormally while unpacking. To evaluate the
verhead, we select three apps and pack them with six different

ndroid packers respectively. These apps’ original dex files have

ifferent file sizes. Then we unpack these 18 packed apps in both

alvik and ART, and record the time of unpacking process. For each

ame unpacking process, we perform 10 times and calculate the

verage value.

Table 6 shows the result of performance evaluation. The second

olumn of Table 6 indicates the file size of original dex . And the

hird column indicates the number of Java classes. They are posi-

ively associated. The three samples have obvious differences in file

ize. Column 4–9 give each sample’s consuming time of unpacking

rocess. Form the result, we get three conclusions: First, the same

ample’s consuming time does not change much among different

ackers. Due to our design principle, we unpack the protected app

n an unified way without considering different packers. Therefore,

t is reasonable. Second, as dex file becomes larger, the consum-

ng time grows obviously. Because while DDS collecting, we need

o calculate the size of each DDS. While dex rewriting, we need

o calculate the new address of each DDS. These two steps take

p most of the time. Therefore, a larger dex file has more DDS,

o needs more time to unpack. Third, unpacking in ART is more

fficient than in Dalvik. Because ART itself provides a significant

erformance improvement as mentioned in Section 2.3 . Generally

peaking, our unpacking process gives an acceptable consuming

ime. On the premise of unpacking’s accuracy, AppSpear can also

rovide a perfect performance.

. Related work

The previous unpacking approaches and tools (e.g., Polyun-

ack (Royal et al., 2006), Omniunpack (Martignoni et al., 2007),

enovo (Kang et al., 2007), Pandoras Bochs (Böhne, 2008), and

ureka (Sharif et al., 2008)) mainly concern about packers of desk-

op platforms. Compared with classic Windows and Linux code

ackers, Android packers are more complex because they involve

oth native code and dex bytecode, which means a packer should

onsider both aspects and keep the balance between protection

trength and stability.

Before our work, a few studies on Android unpacking were pro-

osed. Android-Unpacker (2014) , ZjDroid (2016) and some other

orks (Yu, 2014; Park, 2015) mainly focus on dumping dex data

rom memory. Packers can easily use memory protecion to evade

hese memory dump based unpackers. DexHunter (Zhang et al.,

015) and DWroidDump (Kim et al., 2015) recover dex file by

onitoring the process of packer’s code releasing. DexHunter ex-

loits the class loading process and DWroidDump monitors the

rocess of opening dex file. PackerGrind (Xue et al., 2017) up-

ates to multiple data collection points. However, they can also be

B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16 15

Table 6

Consuming time of AppSpear ’s unpacking process.

Sample File Size of Original Dex Number of Java Classes Average Time of Unpacking in Dalvik(ART) (s)

Bangcle Ijiami Qihoo360 Baidu Alibaba LIAPP

1 457KB 462 1.09(1.08) 1.14(1.03) 1.06(0.98) 1.02 (1.00) 0.98(0.83) 1.18(0.94)

2 2850KB 3018 9.70(2.03) 8.84(1.86) 8.87(2.18) 9.32(2.20) 9.45(1.98) 8.92(2.06)

3 5769KB 5501 19.52(4.80) 18.38(4.44) 17.29(4.53) 17.12(4.88) 18.03(4.67) 18.37(4.79)

Table 7

Comparison of unpackers’ capabilities.

Android-unpacker DWroidDump DexHunter PackerGrind AppSpear

Supporting ART × × � � �

Dex Protection � � � � �

Native Protection � � � � �

Memory Protection T3-1 × × × � �

T3-2 × � � � �

T3-3 × � � � �

Code Release Protection T4-1 × × � � �

T4-2 × × × × �

T4-3 × × × � �

T4-4 × × × × �

T4-5 × × � � �

T4-6 × × × � �

T4-7 × � × � �

T3-1: Fake Information T3-2: Dispersed Code T3-3: Environment Detection

T4-1: Code Release Points in ART T4-2: Bytecode Hiding in ART

T4-3: Stepwise Code Release T4-4: Destructive Code T4-5: Native Method Cheating

T4-6: Time Detection T4-7: Class Loader Replacement

e

o

P

p

T

u

c

S

t

d

p

h

p

8

s

r

s

t

s

s

d

c

t

f

a

s

t

i

w

a

c

h

l

e

h

T

t

a

t

9

i

i

t

a

b

t

A

t

p

a

p

p

R

A
A

A
A

A

A

A

A

B
B

B

C

D

vaded by latest packers because of code release protection . Most

f these unpackers don’t support ART. Although DexHunter and

ackerGrind claim to support ART, they still mainly focus on un-

acking in Dalvik and can not deal with bytecode hiding in ART .

able 7 summarizes the differences between AppSpear and other

npackers. Compared with them, AppSpear doesn’t focus on any

ode release point, which is easily evaded by packers. Instead, App-

pear collects dex data from DDS while app’s execution. As essen-

ial elements of bytecode execution, DDS always provide accurate

ata. At the same time, with the help of execution converter , AppS-

ear can still obtain accurate data in ART despite packers’ bytecode

iding strategy. Therefore, AppSpear can successfully solve all code

acking techniques effectively.

. Discussion

AppSpear is based on dynamic analysis, which means it would

uffer from the code coverage issue. If packers adopt stepwise code

elease strategy, AppSpear needs to trigger all the code release

tubs to collect dex data. Fortunately, according to our investiga-

ion, only one packer (i.e., Baidu, 2017) inserts extra code release

tubs and the inserted stubs are few in number. These stubs are in-

erted into fixed positions (onCreate() of Activity). Since packers

o not have the source code of the app to be protected, it’s really

omplex for packers to insert stubs deep into the program. And

oo many extra stubs would bring more performance loss. There-

ore, we successfully trigger all additional stubs by manual clicks

nd adb tool. Considering that the packers keep evolving, it’s pos-

ible to make the stubs difficult to trigger. We can also utilize In-

elliDroid (Wong and Lie, 2016) to trigger these stubs. IntelliDroid

s a targeted input generator for dynamic analysis of Android mal-

are. It’s paired with full-system dynamic analysis systems such

s TaintDroid (Enck et al., 2014), as well as AppSpear . As they

laimed, AppSpear can have a 93.3% code coverage rate with the

elp of IntelliDroid .

Malware can employ various anti-analysis techniques for emu-

ator or VM evasion (Petsas et al., 2014). It is feasible that pack-

rs can use similar ways to detect our implementation and then
ide the decrypting procedure to defeat our unpacking approach.

hey can utilize our implementation’s code features or fingerprint

o avoid being analyzed by us. To thwart such evasion, we can

lso use similar anti-detection measures as emulator evading de-

ection (Hu and Xiao, 2014).

. Conclusion

This paper describes a systematic study of Android code pack-

ng techniques. We summarize and classify the packing techniques

nto four categories: dex protection, native protection, memory pro-

ection and code release protection . Then we propose a universal and

utomated unpacking system, AppSpear , which employs a novel

ytecode decrypting and dex reassembling approach to replace

raditional manual analysis and memory dump based unpacking.

ppSpear is designed to support both Dalvik and ART. We fur-

her implement AppSpear and evaluate with open-source apps and

acked malware apps. Experiments demonstrate that AppSpear is

ble to resist most latest Android packers’ protections with a low

erformance loss, and it is expected to become an essential sup-

lement of current Android malware analysis.

eferences

libaba Security,2017. http://jaq.alibaba.com/ .
ndroguard, 2017. https://github.com/androguard .

ndroid Statistics and Facts, 2017. https://www.statista.com/topics/876/android/ .
ndroid-Unpacker, 2014. https://github.com/strazzere/android-unpacker .

n automatic android application analysis system, 2017. http://sanddroid.xjtu.edu.

cn/ .
pi permissions.py in androguard, 2017. https://github.com/androguard/androguard/

blob/master/androguard/core/bytecodes/api _ permissions.py .
ppspear source code, 2017. https://github.com/UchihaL/AppSpear .

 tool for reverse engineering android apk files, 2017. https://github.com/
iBotPeaches/Apktool .

aidu security, 2017. http://apkprotect.baidu.com/ .
angcle security, 2017. https://www.bangcle.com/ .

öhne, L. , 2008. Pandora’s bochs: automatic unpacking of malware. phdthesis, Uni-

versity of Mannheim .
houdhary, S.R. , Gorla, A . , Orso, A . , 2015. Automated test input generation for an-

droid: are we there yet? Automated Software Engineering (ASE) .
extemplate for 010editor, 2017. https://github.com/strazzere/010Editor-stuff/blob/

master/Templates/DEXTemplate.bt .

http://jaq.alibaba.com/
https://github.com/androguard
https://www.statista.com/topics/876/android/
https://github.com/strazzere/android-unpacker
http://sanddroid.xjtu.edu.cn/
https://github.com/androguard/androguard/blob/master/androguard/core/bytecodes/api_permissions.py
https://github.com/UchihaL/AppSpear
https://github.com/iBotPeaches/Apktool
http://apkprotect.baidu.com/
https://www.bangcle.com/
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0002
https://github.com/strazzere/010Editor-stuff/blob/master/Templates/DEXTemplate.bt

16 B. Li et al. / The Journal of Systems and Software 140 (2018) 3–16

N
P

Q

S

T

W

X

Y

Z

Z

Dalvik executable format, 2017. https://source.android.com/devices/tech/dalvik/
dex-format .

Enck, W. , Gilbert, P. , Han, S. , Tendulkar, V. , Chun, B.-G. , Cox, L.P. , Jung, J. , McDaniel, P. ,
Sheth, A.N. , 2014. Taintdroid: an information-flow tracking system for realtime

privacy monitoring on smartphones. ACM Transactions on Computer Systems
(TOCS) .

enjarify, 2017. https://github.com/google/enjarify .
F-droid, 2017. https://f-droid.org/ .

Hu, W. , Xiao, Z. , 2014. Guess where i am-android: detection and prevention of em-

ulator evading on android. HitCon .
Ida pro, 2017. https://www.hex-rays.com/products/ida/ .

Ijiami security, 2017. http://www.ijiami.cn/ .
Important issues that work on dalvik do not work on art, 2017. https://developer.

android.com/guide/practices/verifying- apps- art.html .
Jeb, 2017. https://www.pnfsoftware.com/ .

Liapp on-site, 2017. https://liapp.lockincomp.com/ .

Kang, M.G. , Poosankam, P. , Yin, H. , 2007. Renovo: a hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM workshop on Recurring malcode .

Kim, D. , Kwak, J. , Ryou, J. , 2015. Dwroiddump: executable code extraction from
android applications for malware analysis. International Journal of Distributed

Sensor Networks .
Li, Y. , Jang, J. , Hu, X. , Ou, X. , 2017. Android malware clustering through malicious

payload mining. RAID .

Martignoni, L. , Christodorescu, M. , Jha, S. , 2007. Omniunpack: fast, generic, and safe
unpacking of malware. ACSAC .

Mirzaei, N. , Garcia, J. , Bagheri, H. , Sadeghi, A. , Malek, S. , 2016. Reducing combina-
torics in gui testing of android applications. Software Engineering (ICSE) .

Mirzaei, O. , Suarez-Tangil, G. , Tapiador, J. , de Fuentes, J.M. , 2017. Triflow: triaging
android applications using speculative information flows. AsiaCCS .

Naga security, 2017. http://www.nagain.com/ .
etqin security, 2017. http://cn.nq.com/ .
ark, Y. , 2015. We can still crack you! general unpacking method for android packer

(no root). Black Hat Asia .
Petsas, T. , Voyatzis, G. , Athanasopoulos, E. , Polychronakis, M. , Ioannidis, S. , 2014.

Rage against the virtual machine: hindering dynamic analysis of android mal-
ware. In: Proceedings of the Seventh European Workshop on System Security .

ihoo360 security, 2017. http://jiagu.360.cn/ .
Royal, P. , Halpin, M. , Dagon, D. , Edmonds, R. , Lee, W. , 2006. Polyunpack: automating

the hidden-code extraction of unpack-executing malware. ACSAC .

Smali and baksmali, 2017. https://github.com/JesusFreke/smali .
ymantec Report: “Five ways Android malware is becoming

more resilient”, 2016. https://www.symantec.com/connect/blogs/
five-ways-android-malware-becoming-more-resilient .

Sharif, M. , Yegneswaran, V. , Saidi, H. , Porras, P. , Lee, W. , 2008. Eureka: a framework
for enabling static malware analysis. European Symposium on Research in Com-

puter Security .

he dalvik runtime is no longer maintained or available [in latest versions of an-
droid and its byte-code format is now used by art.], 2017. https://source.android.

com/devices/tech/dalvik/index.html .
ong, M.Y. , Lie, D. , 2016. Intellidroid: a targeted input generator for the dynamic

analysis of android malware.. NDSS .
ue, L. , Luo, X. , Yu, L. , Wang, S. , Wu, D. , 2017. Adaptive unpacking of android apps.

In: Proceedings of the 39th International Conference on Software Engineering .

u, R. , 2014. Android packers: facing the challenges, building solutions. In: Proceed-
ings of the 24th Virus Bulletin International Conference .

hang, Y. , Luo, X. , Yin, H. , 2015. Dexhunter: toward extracting hidden code from
packed android applications. European Symposium on Research in Computer

Security .
jdroid. 2016. https://github.com/halfkiss/ZjDroid .

https://source.android.com/devices/tech/dalvik/dex-format
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0003
https://github.com/google/enjarify
https://f-droid.org/
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0004
https://www.hex-rays.com/products/ida/
http://www.ijiami.cn/
https://developer.android.com/guide/practices/verifying-apps-art.html
https://www.pnfsoftware.com/
https://liapp.lockincomp.com/
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0010
http://www.nagain.com/
http://cn.nq.com/
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0012
http://jiagu.360.cn/
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0013
https://github.com/JesusFreke/smali
https://www.symantec.com/connect/blogs/five-ways-android-malware-becoming-more-resilient
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0014
https://source.android.com/devices/tech/dalvik/index.html
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30031-1/sbref0018
https://github.com/halfkiss/ZjDroid

	AppSpear: Automating the hidden-code extraction and reassembling of packed android malware
	1 Introduction
	2 Execution model of android
	2.1 Android app
	2.2 Dalvik VM
	2.3 Android runtime
	2.4 Fallback interpreter in ART

	3 Code packing technique
	3.1 Dex protection
	3.2 Native protection
	3.3 Memory protection
	3.3.1 Fake information
	3.3.2 Dispersed code
	3.3.3 Environment detection

	3.4 Code release protection
	3.4.1 Code release points in ART
	3.4.2 Bytecode hiding in ART
	3.4.3 Stepwise code release
	3.4.4 Destructive code
	3.4.5 Native method cheating
	3.4.6 Time checking
	3.4.7 Class loader replacement

	4 AppSpear
	4.1 Bytecode recovering in ART
	4.2 DDS collecting
	4.2.1 DDS classification
	4.2.2 DDS accessing
	4.2.3 The process of DDS collecting

	4.3 DDS reassembling
	4.3.1 Anti-analysis code resecting
	4.3.2 Dex rewriting
	4.3.3 APK repackaging

	4.4 Code packing technique solution

	5 Implementation
	6 Evaluation
	6.1 Experiments with open-source apps
	6.1.1 Unpacking result
	6.1.2 Analysis of used packers
	6.1.3 Comparison with other unpacking tools

	6.2 Experiments with packed malware
	6.3 Performance

	7 Related work
	8 Discussion
	9 Conclusion
	 References

