
Show Me the Money! Finding Flawed
Implementations of Third-party In-app Payment

in Android Apps

Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang, Yueheng Zhang, Dawu Gu
Shanghai Jiao Tong Univeristy

{yangwenbo1990810, yyjess, jarod, ice wisdom, dabyto, shengdexinqing, dwgu}@sjtu.edu.cn

Abstract—The massive growth of transaction via third-party
cashier has attracted numerous mobile apps to embed in-app
payment functionality. Although this feature makes the payment
easy within apps, transactions via current third-party in-app
payment involve more sophisticated interactions between multiple
participants compared to those using traditional payments. The
implementations in mobile apps also lack security considerations.
Therefore, such transaction exposes new attack vectors and could
be exploited more easily, leading to serious deceptions such as
payment forging.

To investigate current third-party mobile payment ecosystem
and find potential security threats, we conduct an in-depth anal-
ysis on world’s largest mobile payment market–China’s mobile
payment market. We study four mainstream third-party mobile
payment cashiers, and conclude unified security rules that must
be regulated by both cashier and merchant. We also illustrate
the serious consequences of violating these security rules, which
may cause up to four types of attacks against online and offline
transactions. Besides, we detect the seven security rule violations
to the payment in Android apps. Our detection result shows not
only the prevalence of third-party in-app payment, but also the
awful status quo of its security. Over 37% Android apps with
at least 100,000 users embed third-party payment functionality.
Hundreds of them violate security rule(s) and face with various
potential security risks, allowing an attacker to consume almost
every aspect of commodities or services in life without actually
purchasing them or deceiving others to pay for them. Our further
investigation reveals that the cashiers not only have improperly
designed SDK, which may expand the attack effects, but also
release ambiguous documents and even vulnerable sample codes,
directly leading to the mistakes committed by merchants. Besides
the cashiers’ ignorance for security, our successful exploits to
several apps show that these flawed implementations can cause
financial loss in real world. We have reported these findings to
all the related parties and received positive feedbacks.

I. INTRODUCTION

The past few years has witnessed the extraordinary de-
velopments in mobile payment. The significant growth of

smartphone based transaction promotes the usage of third-
party mobile payment services in mobile apps. Compared to
transaction processes with traditional payment channels (e.g.,
via credit card), transaction with third-party in-app payment
is settled within mobile app conveniently. Users can pay their
bills directly without switching to another app or web browser.
Moreover, third-party cashiers are willing to provide such
functionality for popular apps to fulfill in-app payment. To
help an app access their mobile payment service, cashiers
provide SDKs, leading a straightforward integration of in-app
mobile payment functionality. As a result, more and more apps
are using third-party in-app payment as their major payment
channel. Nonetheless, implementing secure in-app payment is
not easy. In-app payment is still in its incipient stage and is
especially error-prone due to both the misunderstanding of app
developers, the improper designed services, and the ambiguous
documents or code samples released by cashiers. It also
involves more participants and interaction steps compared to
traditional payment processes. Therefore, the potential attack
surface is much wider.

Previous studies [25][27][22][18][21] mainly focus on the
security of e-commerce of web application other than mobile
apps. Although numerous security flaws of e-commerce web
applications have been revealed when integrating services of
third-party cashiers. On mobile platform, however, the trust
boundaries are redefined. Client apps are considered untrusted
since all the data handled by apps can be manipulated by
the attacker. Moreover, workflow of e-commerce in web ap-
plications is unable to cover the entire transaction of in-app
payment, since the introduced mobile client plays an important
role in this multi-party model. Thus, it is inadequate to
directly employ traditional flaw detection of web applications
on mobile apps.

To the best of our knowledge, there exists neither unified
specification to regulate in-app payment process nor assess-
ment approach to validate the security of them so far. Doc-
uments and samples of transaction provided by most in-app
payment cashiers are partial or even incorrect. Analysts must
reverse-engineer the binary code of an app and its integrated
in-app payment SDKs to ensure the process. Before finding po-
tential security flaws, it is required to first summarize the status
quo of current third-party in-app payment. It’s also urgent to
conclude the basic security rules which should be obeyed by
both cashiers and merchants throughout the transaction process
as well as their violations detection methodology.

Permission to freely reproduce all or part of this paper for noncommercial 
purposes is granted provided that copies bear this notice and the full citation 
on the first page. Reproduction for commercial purposes is strictly prohibited 
without the prior written consent of the Internet Society, the first-named author 
(for reproduction of an entire paper only), and the author’s employer if the 
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23091



To investigate how widespread is insecure in-app payment
in apps, in this paper we make a study of the world’s largest
smartphone and mobile payment market–China’s mobile mar-
ket. A distinguishing feature in China’s mobile market is that
most apps support third-party in-app payments only. User
cannot use other payment channels such as credit card or
online bank to pay the bills in app. On the other hand, users
in China also prefer to choose these third-party cashiers to
manage their finances because these cashiers provide more
services than traditional banks. Users can not only do shopping
or make investment conveniently, but also transfer to each
other for free through their accounts in cashiers. Once these
third-party payments are vulnerable, every in-app transaction
is inevitably suffering severe security threats. Our study tries
to answer the following questions for our research target: a)
What exactly should be done to implement a secure in-app
payment? b) Which kind of attack can be conducted and who
suffers financial loss? c) What is the ratio of app with insecure
in-app payment and how to detect them? d) What factors affect
the insecure implementation?

To answer the above questions, we first conduct an in-depth
analysis on services of four mainstream third-party cashiers.
The results of our analysis include: 1) we unveil the details of
their payment processes through reverse-engineering relevant
SDKs and apps; 2) we conclude a series of security rules
which regulate the security requirement of in-app payment;
3) we illustrate the severe consequence of violating these
rules including four attacks against both online and offline
transactions. Besides, we develop the methodology to detect
the seven violations of our proposed security rules in Android
apps and their servers as well as the third-party payment
SDKs. We first prove the prevalence of in-app payment through
scanning 7,145 Android apps with at least 100,000 users for
each and pinpointing at least one in-app payment SDK in
above one-third of the analyzed apps. We then detect the
flawed implementations of the 2,679 apps and find hundreds
of them are vulnerable. Also none of the four cashier’s SDKs
reach the requirement regulated by our proposed security
rules. Though the improper designed SDKs do not directly
lead to vulnerabilities, they would expand the effects of user
deception attacks. Through combining these flaws, we can
perform various attacks targeting both merchants and users,
including shopping for free or with others’ money. The affected
area covers almost all aspects of daily life.

Finally, we analyze the root cause of the flawed imple-
mentations of in-app payment. We find the documents and
sample codes provided by cashiers are often not examined
and confuse developers. Some of them are incorrect and even
vulnerable, which directly leads to these flaws of merchants.
Different from previous work [25][27][22][18] which focus on
the security analysis of merchants, our findings reveal that the
cashiers also contribute to the flawed third-party payment on
mobile platform. We have reported all the problems to the
affected cashiers and obtained their credits.

II. IN-APP PAYMENT DEMYSTIFIED

Although in-app payment is pervasive in Android apps,
the process of how an app fulfils a transaction via third-party
payment service is often obscure due to several reasons. First,

implementation variation of in-app payment is significant. Un-
like well-developed multiple-party communication processes
such as OAuth[6], in-app payment has no unified specification
to follow. Different third-party payment service providers
(cashiers) regulate different in-app payment processes and
release their own SDKs for app to integrate. Implementation
aspects of third-party payment services such as used web
APIs, integration style of SDKs, and the parameters required
differ greatly from each other. Second, cashiers often release
documents and samples to app developers. Developer relies on
those documents and code samples to integrate in-app payment
SDKs and implements the payment process. However, our
review illustrates that most of these documents are ambiguous
and may confuse the app developers. Some code samples even
conflict with the process regulated by the documents. Only by
reading cashiers’ documents and studying their sample code
is not adequate to conclude the exact payment process, and
we will give our result in Section V-E. Third, testing the in-
app payment not only involves actual payment with money
expending, but also requires some franchises and relevant
documents only granted to verified identity such as registered
companies. Many analysis efforts lack such qualifications are
therefore impeded.

To demystify the details of in-app payment process, we first
give a brief description of participants involved in payment
process. Then, we choose four popular cashiers to analyze
their documents and code samples. And we reverse-engineer
popular apps with in-app payment to understand the details of
payment implementation. After this reverse engineering work,
we gain a panoramic view of in-app payment process: two
representative payment process models that cover necessary
transaction steps for four cashiers are concluded.

A. Definitions

In a typical in-app payment process, user browses, selects
and buys commodities in a merchant app (MA). Implemented
by the merchant, the MA and the merchant server (MS)
interact with each other. Information such as users information,
commodities provided, and order information are stored in
databases on the MS.

To support payment in app, an MA integrates one or more
third-party payment SDK (TP-SDK) released by the third-
party cashier. In a checkout process, user chooses a third-party
cashier in the MA and makes a payment to the cashier. The
cashier server (CS) records the payment information and status,
and informs the merchant the completion of the payment. The
complete payment information is then stored to the CS.

B. Unveiling Payment Process

To unveil the payment process, we first choose four popular
cashiers as our research targets: WexPay (in-app payment
service provided by Wechat Wallet) [9], AliPay (Alipay Wal-
let) [1], UniPay (Unionpay Wallet) [8] and BadPay (Baidu
Wallet) [4]. Each of them has at least 100 million users.
Merchant can register to all four cashiers as long as it owns
a legitimated company registered to the Chinese Commerce
and Industry Bureau. For every cashier, we get the TP-SDK
and auxiliary materials including code samples and relevant
documents. The documents describe not only interfaces of TP-
SDK but also the suggested payment process and Web APIs

2



of cashier server. Code samples illustrate simplified imple-
mentation for client app and server. We also download 7,145
apps with at least 100,000 users for each from Myapp [5],
the largest Android APP market in China. Through studying
the documents of four cashiers, reverse-engineering the TP-
SDK and downloaded APPs with static and dynamic analysis,
monitoring the network traffic of the transaction process, and
implementing sample code to real app and server, we have
two observations about the in-app payment: 1) how prevalent
is the in-app payment in Android APP; 2) which payment
process model does merchant need to comply with when
integrating third-party in-app payment function. We detail
these observations in the following sections.

C. TP-SDK Identification

In order to find out which app uses third-party in-app
payment, we adopt feature based identification strategy to
detect apps with TP-SDK. We reverse-engineer TP-SDKs of
four cashiers and extract their unique features. We observe
that if an MA uses a TP-SDK, it needs to invoke a specific
interface and passes parameters, hence we make use of these
interfaces as the feature of TP-SDKs. For instance, if an
MA uses TP-SDK of AliPay, it must pass the payment order
information to AliPay SDK through a certain interface 1.
For other three TP-SDKs, there are also similar features.
Notice that the name of interface is not always an available
feature. Developers may use code obfuscation tools such as
ProGuard [7] to obfuscate the function name in app. Therefore,
we manually pick a combination of special strings in every
TP-SDK that are seldom used elsewhere as extra features.
Utilizing those features, we build a static analysis tool based
on AndroGuard [3] to scan all 7,145 apps. The result is listed
in Section V.

D. Process Analysis

After studying the documents and sample code of four
cashiers, along with static and dynamic analysis to merchant
apps and servers, we find that the payment processes adopted
by four cashiers are somewhat different. However, they can be
concluded as two in-app payment process models (in Figure 1
and Figure 2). Among the four cashiers, WexPay and UniPay
follow the process model I (in Figure 1), while AliPay and
BadPay follow the other. We first choose process model I as
an example to illustrate a complete third-party in-app payment
process in detail. It is a simplified model only including
essential steps and parameters of a transaction. The whole
process of the model contains nine steps in general.

1) The MS receives a merchant order (orderm) and the
type of cashier after a user selects the commodities
and chooses a third-party cashier in the MA. orderm
contains order information only related to merchant
(e.g., the type and the amount of commodities user
wants to buy), since cashier has not involved yet by
now.

2) The MS generates a payment order (orderp) accord-
ing to orderm, and sends it to the cashier by invoking
the Web API defined. The orderp should contain
information about this payment, generally including

1com.alipay.sdk.app.PayTask->pay()

four essential parameters: order ID, merchant ID,
total amount, notify URL address. Order ID refers to
the identifier of the payment order. It is usually gener-
ated by the merchant and should be unique. Merchant
ID is used by the cashier for uniquely identifying the
merchant. Total amount refers to the total amount of
money involved in the payment that cashier receives
from user on behalf of the merchant. Notify URL is
an URL address of the MS. After a payment finishes,
cashier needs to inform the merchant of the result by
sending the notification to the notify URL.

3) After receiving and verifying the orderp, the CS
will store payment information into its database,
and returns a signed message (TN) that contains
a transaction number. Notice that the transaction
number identifies the payment order and is generated
by the cashier. It does not contain any unnecessary
information of the order, such as the notify URL or
Total amount.

4) After the MS receives and verifies TN, MS should
sign TN and send it to MA. Notice that TN now
contains the merchant’s signature.

5) MA deals with received TN, and passes it as param-
eters to the interface defined in TP-SDK.

6) TP-SDK prompts its payment UI (an Activity in
Android) to accept user’s confirmation. The payment
Activity in TP-SDK shows the detailed information
of the payment order acquired from the CS through
its own network channel (omitted in the Figure).
After user confirms the payment order and enters the
account password, TP-SDK sends the pay request to
the CS. The CS checks the request, and then pays for
the order with money in user’s account.

7) The CS sends a notification of payment to both TP-
SDK (the step with apostrophe) and the MS (the step
without apostrophe).

8) The MA shows payment result to user according to
the notification received by TP-SDK.

9) The MS validates the signature of the notification, and
makes an extra query of the notified payment order
to the CS to confirm details of the order including
order ID, merchant ID, total amount, etc.

After all the above steps, the transaction is settled and the
merchant can ship commodities or provide services to user.

When adopting process model I, WexPay and UniPay im-
plement similar process with nuance differences. Both cashiers
require different extra parameters for orderp and orderm.
Also, UniPay does not require the TN message to be signed
and does not include Step 8.(in Figure 1) as a necessary step
in its suggested process.

When adopting process model II, however, AliPay and
BadPay have relatively larger differences to WexPay and
UniPay. The main difference occurs in Step 2. The MS just
sends the generated signed payment order (orderp) back to
the MA other than to the CS after receiving the merchant
order (orderm) request from the MA. Compared with model
I, in which the MA can only receive TN, the MA in Figure 2
receives the complete payment order information including
order ID, total amount of the payment, the notify URL address
of the MS, etc. And it transfers all the information to the

3



MA CS

1.orderm request

TP-SDK MS

2.orderp

3.TN

8.orderp query

4.TN

5.TN

6.pay request

7.orderp NTF

7'.orderp notification

8'.callback

9.orderp status

Fig. 1: In-app Payment Process Model I adopted by WexPay and UniPay

MA CS

1.orderm request

TP-SDK MS

6.orderp query

3.orderp

4.pay request

5.orderp NTF

5'.orderp notification

6'.callback

7.orderp status

2.orderp

Fig. 2: In-app Payment Process Model II adopted by AliPay and BadPay

integrated TP-SDK, which is responsible for dealing with all
the detailed parameters of the payment order in this process.

In Figure 1 and Figure 2, messages with bold and italics
text need to be signed by the sender to prevent being tampered.
So another important factor in the transaction process is the
signing method of messages adopted by cashiers. AliPay
and UniPay regulate the SHA1-RSA as their signing method.
Merchant generates its RSA private key and public key, and
sends the public key to the cashier. Also, cashier informs every
merchant its public key. The MS verifies the received signed
message with the cashier’s public key, and sends message
signed with its private key to cashier or to the MA. However,
WexPay and BadPay adopt hash function (e.g., MD5) with a
secret key (as the salt of the hash function) to generate the
signature. The secret key is shared between the merchant and
the cashier. In the later part of this paper, we denote both the
secret key of hash function and the merchant’s RSA private

key as KEY.

III. SECURITY ANALYSIS

We conduct further security analysis to the process mod-
els we concluded above in this section. The security of
third-party payment has been studied before in previous
work [25][18][27][21]. However, all of them focus on Web
service. In the prevailing mobile platform, the in-app payment
introduces new multi-party models and thus, faces new security
challenge. The merchant client application and the embedded
TP-SDK play more significant roles which do not exist in
traditional Web model. So it’s necessary to re-consider the
security threats of the in-app payment on mobile platform.

Although the payment process models that regulated by
cashiers have been vetted before releasing and are supposed to
be secure, such multi-party models still struggle against various
unexpected security threats due to the information asymmetry

4



in the transaction process. Moreover, the whole transaction
process involves multiple parties, not only cashiers, but also
merchants and users. Due to the ambiguous documents and
confusing sample code released by cashiers, developers of mer-
chants often disobey the process model regulated by cashiers
and implement diversified payment processes, which may lead
to potential security flaws. Any mistake committed by any
party in the multi-party model may lead to the whole process
vulnerable. Therefore, it’s necessary to conclude security rules
to regulate all parties in the model.

In this section, we first define the adversary model. Then
we give the security rules which must be complied, and what
the cashier and the merchant should pay extra attention to
throughout the entire transaction process of in-app payment.
Finally, we describe four attacks in detail under our reasonable
adversary model if the cashier or merchant violates the security
rules, which may lead to the loss of multiple participants in
the model.

A. Adversary Model

Before proposing security rules and the attacks caused by
rule violation, we first define the adversary model as followed.
We assume that the attacker can reverse-engineer MA and the
embedded TP-SDK, since it can be easily acquired in Android
Application market (even if the app is protected, techniques
have already developed to circumvent it [28]). When the attack
targets cashier or merchant, the attacker plays the role of
a malicious user and is assumed to be able to manipulate
execution or data of local app and system, and to tamper
or forge the network communication. But when the attack
involves other users of the MA, attacker is assumed only
to control the data transmission between them (e.g., perform
MITM attack with the ARP spoofing or deceive users to
attacker’s malicious WiFi), but not to control other users’
devices, i.e., not able to install malware or repackaged MA on
them by subterfuge. Though the attacker is not able to sniff
or tamper the network traffic between MS and CS under any
circumstances, it can forge request or message to either MS
or CS in our model.

B. Security Rules

According to the two types of process model adopted
by four cashiers and the adversary model, we conclude the
following security rules that must be obeyed throughout the
whole process involving both cashiers and merchants, no
matter how cashier regulates the process model or which
cashiers MA chooses to use. Otherwise, the process will be
breached.

1) Payment orders must be generated (Figure 1) or
signed (Figure 2) by the MS only.

2) Never place any secret (e.g., private key for signing)
in the MA.

3) TP-SDK must inform user detailed information of the
payment order.

4) TP-SDK must verify the transaction belonging to the
MA.

5) Always use secure network communication between
client and server.

6) Always verify the signature of received messages.

7) MS should make an extra query to confirm notified
payment’s details.

There are four types of attack that the payment process may
suffer if one or more violation of security rules occur, and the
victims involve normal users of MA and the merchant. Then
we will describe them in details.

C. Order Tampering

MA/ATTACKER CS

1.orderm request

TP-SDK MS

2.orderp
T

3.TN

4.TN

5.TN

6.pay request

7.orderp
T 

NTF

7'.orderp
T notification

8'.callback

Fig. 3: Order Tampering Attack to Process Model I

MA/ATTACKER CS

1.orderm request

TP-SDK MS

3.orderp
T

4.pay request

5.orderp
T 

NTF

5'.orderp
T notification

6'.callback

2.orderp

Fig. 4: Order Tampering Attack to Process Model II

In this type of attack, the attacker acts as a malicious user.
If the merchant fails to obey the Security Rule 1 and Rule
7, then attacker can cheat the merchant by sending a payment
order (orderp) to the cashier different from the actual merchant
order (orderm). In this situation, the attacker could tamper
the content in the payment order such as the total amount and
thus pay less money for the ordered commodities without the
merchant’s awareness.

The attack for process model I is shown in Figure 3. In
model I (Figure 1), the signed payment order is generated and
sent by the MS to the CS. A local attacker can only obtain the
(TN) message which does not include any detailed information
(e.g., the total amount of the payment) of the payment order.
Thus, it’s impossible to tamper the payment order information.
However, if the MA incorrectly implement the payment order
generation step in the app rather than its server, the attacker
can succeed in tampering the payment information. Since the
attacker can take full control of local app and system, we

5



merge the attacker with the MA in the Figure 3. The orderTp in
the figure indicates that the payment order has been tampered
already and so does Figure 4.

In model II (Figure 2), though the complete payment order
information can be achieved by the attacker (orderp need to
be returned to MA), he can not tamper it since the payment
order is signed by MS. A payment order with wrong signature
will be rejected by the cashier. However, if the merchant signs
the payment order or leaks the KEY in the MA, then the
attacker with full control of the local app and system could
easily intercept all information appeared in the MA, and is
then capable of tampering the received order information (e.g.,
modifying the price), and re-signing it as a legit one to TP-
SDK (as shown in Figure 4).

To fulfil this attack, another implementation flaw is re-
quired: the merchant fails to confirm the notified payment
order information to CS (Security Rule 7). Otherwise, MS
can get every details of the notified payment order including
total amount, merchant ID, etc after make the query to CS. It
can refuse the tampered order after verifying every details of
it and does not ship commodities.

In all, the violation of Security Rule 1 and Rule 7 will
make the merchant become victim, and attackers as malicious
users can buy commodities in any price.

D. Notification Forging

If the merchant fails to obey the Security Rule 2 (or Rule
6), and Security Rule 7, then it suffers notification forging
attack, allowing attackers to purchase commodity without
paying it. In the attack, a normal payment process is performed
until the TP-SDK requires user to confirm the order and enter
password to pay for it. At that time, an attacker does not pay
for it, but instead sends a fake payment result notification to
notify the MS that the order is paid successfully. The attack
model to process model I (Figure 1), for example, is shown
in Figure 5. If the order is not paid (Step 6. in Figure 1),
it still remains ’pending’ status, and the MS will not receive
the notification from the CS (Step 7. in Figure 1). However,
afterwards attackers can forge the notification and send it to
the MS (Step 6. in Figure 5). If the merchant trusts this fake
notification and does not confirm the order’s details to the CS
(Step 8. in Figure 1), the payment is successfully forged. The
attack can also be performed to model II (Figure 2) with the
same way, which we omit it here.

Attackers need to exploit several mistakes committed by
the merchant to make a forged notification available. First,
the notify URL address of MS that receives the payment
notification from CS should be known beforehand. So the
attack requires MA to contain the notify URL address, which
would be placed by the developers accidently. Actually, as we
illustrated before, MA who adopts process model II (AliPay
and BadPay) certainly contains the notify URL, since all order
information including notify URL is used as input of the
TP-SDK (Step 3. in Figure 2). Second, the attack needs to
construct a forged payment order notification of the cashier and
cheats MS to accept it. Attackers can obtain the data format
of the notification message from documents released by the
cashier, and then forge it with a signature which labels the
identity of the sender. The KEY used here is often extracted

from the MA, in which the merchant’s developers place this
shared secret key by mistake (Security Rule 2). Notice that
among four cashiers, only the notification of those who adopt
hash-function as their signing method (WexPay and BadPay)
can be forged because the cashier and the merchant share the
same KEY as their signing KEY. For those using SHA1-RSA
to sign the messages, the RSA private key of cashiers can be
hardly leaked, thus, forging the cashier’s message with legal
signature is quite impossible. Moreover, we observe that some
MSs even ignore the validation of the signature of the received
messages (Security Rule 6). Thus, the fake notification even
with wrong signature is unconditionally accepted. Finally, sim-
ilar to Order Tampering attack, notification forging also needs
the MS to ignore the order re-confirmation step. Otherwise the
merchant can find out that the notified payment order is still
remain ’pending’ status in CS.

In all, if the merchant 1) fails to check the signature of
notification message at the MS or leaks the signing KEY, and
2) misses notified payment confirmation at the MS, then the
attack will succeed.

E. Order Substituting

Different from the two attacks above, the victim of order
substituting attack becomes the normal user of MA rather
than the merchant. The cause of this type of attack involves
multi-parties’ violation of security rules including both cashier
(Security Rule 3 and 4) and merchant (Security Rule 5). In
this attack, the attacker substitutes an order of one transaction
to another, and misleads a victim user to pay for the attacker’s
order unconsciously.

Figure 6 shows the order substituting attack to process
model II (Figure 2). The attack is available when the message
returned from MS is transferred with an insecure network
communication channel. Thus, the attacker can act as a man-
in-the-middle between MA and MS. Attackers can intercept
the message and substitute signed payment order (orderp)
with another one (orderAp ) of a legal transaction, and send
it to the MA on victim’s device. The victim will then pay for
the attacker’s order rather than his own order. Notice that the
attacker uses a legal payment order to replace the original one.
This message usually belongs to a normal trade performed by
the attacker beforehand (steps between Step 2. and Step 2’. in
Figure 6), so it is reasonable to cheat the victim’s TP-SDK and
finish the transaction with this message successfully. The attack
to process model I (Figure 1) is similar. The only difference
is that the attacker needs to substitute the TN message (Step
4. in Figure 1) rather than the orderp (Step 2. in Figure 2)
returned from MS.

The root cause of this attack includes the lack of secure
communication channel as well as the inadequate prompt
information showed by TP-SDK. We discover that the payment
Activity (Activity is a component of Android application,
acting as an user interface) of TP-SDK generally does not
show enough information about current payment order, thus
the victim will confirm and pay for another order without
being aware of it. For example, if the payment Activity only
shows the total amount of the order, then the attacker could
make an order with the same price of the victim’s order. Even
if some TP-SDKs show the commodities and the merchant

6



MA CS

1.orderm request

TP-SDK MS

2.orderp

3.TN

4.TN

5.TN

6.fake orderp NTF

ATTACKER

Fig. 5: Notification Forging Attack to Process Model I

MA CS

1.orderm request

TP-SDK MS

6.orderp
A query

3.orderp
A

4.pay request

5.orderp
A NTF

5'.orderp
A notification

6'.callback

7.orderp
A status

orderp
A

ATTACKER

orderm
A request

2.orderp

2'.orderp
A

Fig. 6: Order Substituting Attack to Process Model II

name of the order, the attacker could make an order with
same commodities while modifying the consignee since it is
not difficult for attacker to know what victim is going to buy
through eavesdropping the merchant order request (Step 1. in
Figure 6) via insecure network connection between the MA
and the MS. What’s worse, if the TP-SDK accepts the orderp
(or TN), whatever it is generated by the host MA or not, this
attack can be expanded that even a transaction from another
MA can be substituted to that from one MA. In other words,
if attackers substitute the original orderp (or TN) with anther
orderp (or TN) of malicious merchant registered to cashier by
attackers themselves, the money paid for the transaction will be
transferred to attackers directly. Nevertheless, our investigation
indicates that some TP-SDKs do not verify TN carefully,
allowing attackers to substitute the original one easily.

In a word, as long as 1) MA adopts insecure network
channel to communicate with MS (Security Rule 5), 2) and
the TP-SDK in MA does not display clear information about

the payment order on its payment Activity (Security Rule 3),
attackers can perform MITM attack and deceive users to pay
for orders not belonging to themselves. Also, missing orderp
(or TN) verification in TP-SDK (Security Rule 4) will expand
the impact of the attack.

F. Unauthorized Querying

If the merchant violates the Security Rule 2, leaking its
KEY to attackers, it will also suffer the unauthorized querying
attack. An unauthorized querying attack allows attacker to
query every transaction recorded in CS, acquiring secret busi-
ness information which should only be shared by cashier and
merchant. The root cause of this attack is due to the leaking of
merchant’s authentication credential. Cashiers provide several
Web APIs for merchant to query various information, such
as every payment order’s status and details, the merchant’s
history bill of everyday, etc. Furthermore, cashiers make use of
the signing KEY to authenticate the identity of each merchant.

7



However, the KEY may be accidently placed in the MA by the
developers of the merchant. So the attacker could utilize the
leaked KEY to query transaction information illegally.

IV. DETECTING FLAWED IN-APP PAYMENTS

The violation of the seven security rules causes exploitable
attacks and leads to serious consequences. In this section, we
will describe how to convert these rules into detectable forms
in the payment process. Detecting these violations is helpful
to find flawed in-app payments to actual loss. Furthermore, we
discuss the feasibilities and details of detecting such flaws.

A. Local Ordering

According to the Security Rule 1, MA is prohibited to
generate payment orders for those adopting process model
I. Local ordering refers to the incorrect ordering behavior
implemented by the MA rather than the MS. It allows the
attackers to tamper the payment order. Notice that this flaw
only appears to apps with WexPay or UniPay, since in their
regulations, placing the payment order must be enforced by
the MS.

To detect this violation of Rule 1, we search the existence
of a relevant destination URL used by the merchant to place
a payment order. In detail, app will visit destination URL2

for WexPay and UniPay, respectively. The visit indicates the
incorrect behavior of generating order locally. Therefore, we
first scan all strings in DEX file and resource file of an APK
to find whether the above two strings exist. If so, the app is
then manually tested to confirm the security flaw.

B. KEY Leakage

In the two payment process models, several messages
transmitted need to be signed. According to our proposed
Security Rule 2, sensitive information, especially the KEY is
prohibited to appear in app. Otherwise, attackers can tamper
or forge messages with legal signature and camouflage to be
certain party and cheat others in the multi-party model.

We combine pattern matching and dynamic testing tech-
niques to detect KEY leakage in apps. We develop an automatic
detecting tool based on AndroGuard to search leaked KEY in
app adaptively against specific cashier.

For WexPay, it adopts hash function with secret key to
generate the message signature. The secret key for message
signing is a 32-byte string with arbitrary content shared with
merchant and cashier. The MA uses this key to sign message so
we would like to search such hard-coded key in app. However,
simply searching 32 bytes length string in an MA often gives
a huge amount of candidates. To effectively determine the
potential key, we utilize a Web API provided by WexPay as an
oracle to substantiate the key identity accurately. The Web API
offered by WexPay allows merchant to download the history
bill of one day with three necessary parameters: appid, mch id,
and secret key. Therefore, we could leverage the appid and the
mch id to help identify the secret key. Notice that the features
of these two parameters are apparent: the appid is a 18-byte

2https://api.mch.weixin.qq.com/pay/unifiedorder for WexPay;
https://gateway.95516.com/gateway/api/appTransReq.do for UniPay

string with a wx prefix, and the mch id is a 10-byte string
comprised of digits only, and both two parameters are uniquely
allocated to merchant. We can first locate strings with similar
features in DEX file and resource file (strings.xml), and query
the Web API for the identity of the found parameters. If any of
the input parameter is incorrect, the response of the query gives
a corresponding notification. For instance, if the first appid
parameter is incorrect, the Web API would directly return a
“wrong appid” notification without considering the following
parameters. Thus we could check each parameter individually
until its correctness is identified, which significantly improve
the efficiency. And if all three parameters are correct (which
means we find a leaked key in app), the Web API responds
either the merchant’s real bill data, or “no bill exists” if no
transaction happened on that day. Using this testing approach,
we can effectively find leaked WexPay key in an app. Similar to
WexPay, BadPay uses a shared secret key to sign its messages.
However, no Web API is provided by BadPay for us to verify
the potential key candidates. Considering that far fewer MAs
use BadPay, we could confirm the key through manual reverse
engineering.

For AliPay, merchant uses an RSA private key within a
Based64-encoded standard ASN1 certificate to sign the order
information. The certificate format contains remarkable feature
(A string with ’MI’ as prefix and at least 300 bytes long)
and can be easily located. However, the app may also contain
such certificates to fulfil other functionalities. To confirm the
application of found certificates, we adopt the following two
heuristics. We first check whether the variable name of the
candidate certificate contains ali or alipay. Second, we make
use of the cross reference searching to find the Java class
that refers to the candidate certificate. Since the private key
in a certificate is used to sign the order of AliPay, the order
information is often generated in the same class that uses
the private key. This generated order information contains
specific feature strings (“&service=mobile.securitypay.pay”
for example) and can be easily identified. If a certificate
corresponds to one of the above properties, we regard it as
the signing key of AliPay. Similar to AliPay, UniPay also uses
RSA private key to sign its messages but the private key is
encapsulated in a CER format. We also adopt similar detection
methodology to UniPay.

C. Incomplete Prompt

When an MA invokes the TP-SDK and shows the payment
Activity to users (e.g., between Step 5. and Step 6. in Figure 1),
users need to confirm the order and decide whether to pay for
it. As the Security Rule 3 implies, detailed order information
should be prompted to user in the payment Activity completely.
Otherwise, user may suffer deception, resulting in an attack
that what user pays is not what he/she really buys (Order
Substituting Attack).

We detect this security flaw by checking whether TP-SDK
displays enough information about the payment order to user
during the payment. In detail, the following fields are checked:
1) payment order ID that represents the order uniquely in both
merchant and cashier. 2) what commodity or service that users
are going to pay. 3) user that the order belong to in merchant
app. 4) merchant that the order belongs to. 5) total money of
the payment.

8



D. Transaction Verification Missing

In a secure payment process, TP-SDK integrated in MA
need ensure that the received payment order (Step 3. in
Figure 2) or TN (Step 5. in Figure 1) actually belongs to
the MA according to Security Rule 4. Otherwise, malicious
merchant can expand the Order Substituting attack and directly
get money from users as we mentioned in Section III-E.

We detect this security flaw through testing whether the
TP-SDK accepts a payment order that does not belong to the
MA. First, we place a order using a normal MA. Then we
intercept the orderp / TN message from the MS and substitute
it with orderp / TN message generated from another MA. And
we check whether the order belonging to another MA can be
accepted successfully by the TP-SDK. If so, the violation of
Rule 4 is confirmed.

E. Insecure Communication

According to Security Rule 5, network communication
between MS, CS, and MA (including its integrated TP-SDK)
should adopt secure transmission (e.g., via TLS channel).
Otherwise, attackers can intercept, eavesdrop or tamper what
users want to buy (e.g., in Step 1. of Figure 1), the payment
order information (e.g., in Step 2. of Figure 2), or the trans-
action information (e.g., in Step 4. of Figure 1). It can also
directly cause the Order Substituting attack, as we mentioned
in Section III-E.

According to the adversary model, we mainly concern
how to detect the insecure network communication employed
between the MA (including TP-SDK) and the remote server.
We set a proxy to conduct MITM attack against HTTP and
HTTPS connection to detect the potential flaw. The insecure
communication between TP-SDK and CS may cause wide and
serious consequence. Since TP-SDK is integrated by a large
number of APPs, all the MAs with this kind of TP-SDK will
suffer vulnerabilities (such as payment information leakage,
transaction interception and tampering, etc), if the network
communication is insecure. So we adopt a refined policy to
detect the flaw in TP-SDK. We try to sniff and attack the
network communication during a manually conducted payment
process. If the connection between TP-SDK and CS is an
HTTP connection, we regard it as insecure. Furthermore, if
the connection is HTTPS, we will check whether it verifies
the SSL/TLS certificate properly, or implements the certificate
pinning. If the TP-SDK uses private protocol communicating
with its server, we further audit the security of this protocol
(since there are only four TP-SDKs, we could audit it manu-
ally).

For the communication between MA and MS, we only
consider the situations of HTTP, insecure HTTPS (without
certificate validation), and secure HTTPS. Our purpose is to
find out the network connection of the exact step when MS
returns orderp / TN to MA is secure. Since our result needs
high accuracy, we manually trigger the MA to the step and
monitor the network traffic.

The limitations of automated analysis methodology to
detect the security flaw is so serious that lead to high in-
accuracy. The key difficulty is that how to find the URL
connection related to the step that MA and MS transmit the

transaction information accurately. Among a variety of URL
strings in apps, it’s quite impossible to decide which URL is
responsible for transmitting the order/transaction information
only by name. In addition, it is common for apps to join several
substrings to the ultimate URL address, or even use code
obfuscation to sensitive URL, which also raise the difficulty
of automated detection. Previous work like MalloDroid [15]
only gave coarse detection result without identification of
target URL’s logic function, and [19] even indicated the
inaccuracy of such automated analysis, which further prove
the difficulty of this work. Furthermore, finding the target
URL with dynamic analysis involves deep human interaction,
including registering and login account, clicking products,
choosing in-app payment and paying for the order, which is
also impossible to be automated and large scale. As a result,
we can only do it manually to achieve accurate detection result.

F. Notified Payment Confirmation Missing

As Security Rule 6 implies, MS needs to make an extra
payment order query (e.g., Step 8. of Figure 1) to confirm every
details of the payment order, even if it receives the payment
notification. Since this part of implementation is on MS, we
can only apply an indirect detection approach to detect the
violation. We try to tamper a payment order information which
is different from the original payment order but with legal
signature, and pay for it. If the MS accepts the payment order
and ships the commodities, then we can conclude that the MS
does not re-confirm the notified payment order. Notice that
the tampered order message should be with correct signature,
which means the samples here need to be based on the result
of KEY Leakage. We perform the dynamic detection manually,
because the process involves much human interaction such as
placing orders and checking the payment’s status.

G. Signature Validation Missing

Security Rule 7 implies that MS is supposed to check
the integrity of every received message (e.g., in Step 3., Step
7., and Step 9. in Figure 1). Otherwise, MS would accept
messages even with incorrect signature. To detect this flaw,
we try to place an order but without actually paying for it,
and then forge an order notification to the MS with incorrect
signature. If the merchant accepts the payment order, Then we
can conclude that MS fails to check the signature properly.
Here the samples are based on the apps that commit Notified
Payment Confirmation Missing. Because we need to exclude
the negative result caused by successfully confirming the
notified payment.

V. EMPIRICAL STUDY

We make an empirical study of the world’s largest smart-
phone and mobile payment market–China’s mobile market.
We choose it as a representative example for the following
reasons: First, nearly 400 million users in this market use
mobile devices to purchase goods and services (by the end of
2015, according to research from the China Internet Network
Information Center). In the first quarter of 2016, China’s third-
party mobile payment tools handled transactions worth more
than 5.9 trillion yuan (885.8 billion us dollar). Second, unlike
the mobile payment market in the U.S., where most mobile
transaction is settled via credit card through web or Apple Pay,

9



TABLE I: TP-SDK Distribution

Cashier Number

WexPay 2260
AliPay 1299
UniPay 574
BadPay 34

Total 2679
Sample 7145

Cashier KEY leakage Local Ordering

WexPay 155 104
AliPay 398 /
UniPay 0 0
BadPay 7 /

TABLE II: Flaws in Merchant Apps

in China’s market most popular apps mainly use in-app third-
party payment services. Third, instead of a single payment
standard, a variety of payment schemes are provided by
different third-party cashiers. Each payment scheme is unique
and one app may support many schemes simultaneously. To
investigate the flawed in-app payment implementations, we
first conduct our TP-SDK identification to the 7,145 most
popular apps from Myapp market. As Table I shows, 2,679
apps integrate at least one TP-SDK, and most of them contain
more than one TP-SDK. The proportion of apps supporting in-
app payment is as high as 37.5%, which proves the prevalence
of third-party in-app payment.

Then we detect each security flaws we mentioned in Sec-
tion IV. We classify these flaws into four categories involving
MA, TP-SDK, MS and network communication. Besides, we
further investigate the official documents and analyze sample
codes released by four cashiers in-depth and gain some in-
teresting and unexpected findings, which may imply the root
cause of these flaws. Then we choose representative vulnerable
apps based on the result of detection and then exploit their
security flaws to prove the validity of our analysis. We provide
them as case studies to illustrate the complexity of conducting
concrete attacks against real world transactions. After our
detection, we find that hundreds of the merchants violate at
least one security rule and none of the four TP-SDKs strictly
obey these security rules.

A. Flaws in MA

We first detect those flaws in the 2679 MAs. The detection
result is shown in Table II. We can see that hundreds of
the merchants leak their KEYs in MAs. Nearly one hundred
merchants using WexPay generate and send payment order in
MAs.

Notice that our KEY Leakage result of WexPay has no
false positive since it is based on the response messages
from WexPay’s Web API as we mentioned in Section IV-B.

However, there may be false negatives because our large scale
application analysis is mainly based on static analysis, which
means this is even an underestimated result. If the KEY or
the URL is encrypted in the MA, or sent by the MS through
network to app, then we can not detect it with the string
feature. The result of detecting WexPay destination URL is
over 130. However, after our manually confirmation, 104 of
them really do Local Ordering, and the rest just hard-code
the URL without invoking it. All the Local Ordering apps
of WexPay leak the KEY since they generate and sign the
payment order in MA. However, another 51 apps either use
the KEY to sign the received TN message or just hard-code
the KEY without actually use it, both violating the security
rules. Also we detect that nearly 500 apps integrated AliPay
contain strings with RSA private key features. Among them,
we find out that 398 apps actually leak their AliPay private
keys using the locating techniques mentioned in Section IV-B,
and the rest are the keys of other SDKs. Since only 34 apps
integrated BadPay, we do the Key Leakage detection manually.
Among seven flawed apps, five of them hard-code its KEY.
One of them encrypts the KEY and stores it in MA. However,
it uses symmetric encryption and hard-codes the key, so the
KEY of its BadPay can be decrypted and retrieved. And one
app receives its KEY of BadPay from its server after it places
its merchant order, which is unnecessary and also leads to KEY
leakage. In addition, we find out that several apps share the
same KEY of WexPay and AliPay, which means that they are
either using the same checkout account or developed by the
same company.

B. Flaws in TP-SDK

Since TP-SDKs are provided by the cashiers and integrated
by the MA, flaws in specific TP-SDK directly affect the host
MA. We evaluate the four most popular TP-SDKs provided by
AliPay, WexPay, UniPay, and BadPay, respectively. The result
is shown in Table III. Only WexPay verifies TN correctly. TN
accepted by WexPay SDK includes parameters of merchant
ID, transaction number, etc. WexPay SDK achieves the MA
certificate through system API in Android, and checks the con-
sistency of the APK certificate and merchant ID. It also checks
whether the transaction number belongs to the merchant ID. In
contrast, we succeed in invoking the other TP-SDKs (AliPay,
UniPay, BadPay) integrated in the MA by the transaction order
of another MA. Also, we find that both WexPay and AliPay
require the registered merchants to submit their certificates
of MA, while UniPay and BadPay do not. Obviously, only
WexPay makes use of the certificate to verify TN.

For Incomplete Prompt, we manually check every elements
presented on the payment Activity of every TP-SDK. We
find out that all four TP-SDKs do not present the order’s
owner in the Activity, leading to the risk of phishing. BadPay
only shows the total amount of the payment order, which is
obviously insufficient. WexPay and AliPay both show the order
description submitted by merchants. But they do not require
the merchant to submit necessary information about the order
such as the order ID, the order owner, etc. UniPay and WexPay
show the merchant name of the order while AliPay and BadPay
do not. Also for UniPay, order ID and payment time will be
shown to users only if a spinner on the Activity is clicked. In
all, every TP-SDK lacks necessary information more or less
on payment Activity, which may lead users to be deceived.

10



Cashier Transaction Verification Information Prompt Network CommunicationorderID commodity owner merchant money
WexPay � × � × � � secure private protocal
AliPay × × � × × � HTTPS pinning
UniPay × � � × � � HTTPS pinning
BadPay × × × × × � HTTPS validation

TABLE III: flaws in TP-SDKs

We manually check the implementation of network com-
munication of four TP-SDKs. SDKs of AliPay and UniPay
use HTTPS to connect to their servers and adopt certificate
pinning. WexPay SDK use a proprietary protocol to commu-
nicate with its server. After we reverse-engineer it, we find
that it implements its key agreement algorithm based on ECC
with hard-coded secure parameters in the SDK. The protocol
is then audited manually and is proved to be secure enough
against MITM attack. The SDK of BadPay validates the SSL
certificate properly, thus, is secure. However, compared to the
other three TP-SDKs, BadPay does not adopt SSL-pinning,
which means it can not be protected against a compromised
CA.

C. Flaws in MS

We tampered the payment order of 15 KEY leaked apps
with correct signature and paid for it to see whether MS would
accept them. Since the action need really exploit the KEY
Leakage vulnerability, involving a lot human interactions like
MA account registration, placing a merchant order, tampering
the payment order, and paying for it, it’s unrealistic to be
automated and large-scale. So we did it manually and found
that 9 of the 15 apps that finally accepted the tampered
order, which means that their MSs miss the notified payment
confirmation to CS. Among the nine vulnerable apps, there are
MA that use WexPay, AliPay or BadPay.

We further checked whether the MSs of the nine apps verify
the signature properly. We got the notification message format
according to cashiers’ documents, forged the message with
incorrect signature and sent it to the Notify URL address of
the MS. The result is that two of the nine apps’ servers still
accept the payment. It indicates that even if the KEY is not
leaked, attackers can still buy products without paying for it.

D. Flaws of Network Communication

We manually test 87 most popular MAs chosen from the
2,679 apps with embedded TP-SDKs to evaluate the security
of their connections to the MS during the payment. The result
is that 45 apps use HTTP connection and 42 apps use HTTPS
connection. Among 42 apps who use HTTPS connection,
four of them fail to validate SSL certificate properly. In
addition, although we do not find proprietary protocol used
by MA to communicate with the MS, some apps adopt home-
brewed encryption schemes to protect the content in HTTP
connection. Since those encryption schemes generally lack a
mature session key management, we regard them as insecure
without further investigating the security of their encryption.
In all, these 49 vulnerable apps increase the risk of suffering
Order Substituting attack.

Though we did not test all the 2679 apps due to the inaccu-
racy of automatic analysis, the result of the 87 samples through
manual work shows that a large proportion of merchants are
still not cautious in implementing secure network communica-
tion. It is an astonishing result that even in 2016 there are still
so many popular apps use insecure HTTP channel even if all of
them are related to financial transaction. Notice that the tested
samples are the most popular apps with larger user amount
and stricter security audit. We believe that those samples
with less user amount may perform worse on building secure
communication. Moreover, we find that cashiers only request
the merchant to adopt HTTPS communication in the MA as
an optional requirement rather than a mandatory enforcement.
So merchants may ignore the request and implement insecure
network communication.

E. Root Cause Inquiry

As we mentioned above, cashier is mainly to be blame
for the various mistakes committed by merchant. They release
ambiguous, confusing and self-contradictory documents and
sample codes, which directly result in the security flaws in MA.
Contrary to common sense, we find out that even the official
sample code violates several security rules and is apparently
vulnerable. Merchants who follow these samples codes suffer
our proposed attacks.

After reviewing the sample codes as well as manually
checking the documents of the four TP-SDKs, we have some
interesting findings. Even though all of the four TP-SDK
documents claim that the KEY needs to be kept in secret,
their sample codes implement the process of message signing
in their client apps, leading to the KEY leakage, except
UniPay. It can be used to explain that so many MAs commit
vulnerabilities when using WexPay, AliPay or BadPay (while
become secure using UniPay). For example, the sample code
released by WexPay directly commits Local Ordering, which
obviously conflicts with its official process. We also find that
the figure describing the process of the payment released by
AliPay defines that the order should be signed in client app and
so does the sample code, but the code comment in the sample
says that the signing step should be in MS. We hypothesize
that the contradiction between documents and sample code
confused merchant developers a lot, leading those developers
who follow the sample during their development to commit
these mistakes. Only the sample code of UniPay implemen-
tation keeps consistent to their documents, making the order
generating and signing in the MS code, so in our detection
none of the APPs are flawed when using UniPay. It shows
that the cashier is the key factor to the security of merchant
implementation. Also UniPay SDK does not need the signature
of TN as parameters, while others need. So some MAs of the

11



three TP-SDKs just sign the payment and send it to TP-SDK,
also leading the KEY Leakage. The correct implementation,
by contrast, is that the signature of TN or payment order
should be received directly from MS. In addition, since the
KEY of WexPay can be modified to any string as long as
merchant notifies cashier, we find that some leaked keys, which
are supposed to be random strings, are modified to a weak
key such as 12345678912345678912345678912345, or just the
name of merchant, which may suffer brute-force dictionary
attack, or social engineering.

We also try to discover the incentive of flawed MSs.
We find that not all cashiers release the sample code of
MS, thus merchant needs to implement it without example
by themselves. Even if there is sample code for MS, server
implementation varies a lot compared with the client. Merchant
may implement their servers by using Java, PHP, .NET, Python
or even native language, which are out of the language scope of
sample code released by cashier. Even though cashiers suggest
merchants to do these validations in documents or some even
implement them in sample code if it has, merchant may also
ignore it during the code transplant or without existing correct
code examples. Besides, the incomplete prompt and transaction
verification missing in TP-SDK are mainly caused by business
convenience, user experience or UI design. Even if these flaws
do not directly lead to attack, they will expand the attack effect
along with other flaws in MS or MS.

Although the third-party in-app payment involves financial
transaction and should have high security level, none of the
cashiers emphasize the security in particular. Some cashiers
just mention it (e.g., suggesting the merchant to implement
the network communication in HTTPS in the end of the
documents), which is easy to be ignored by merchants. Not
to mention the fact that improper designed TP-SDK and in-
correct documents/sample codes released by cashiers. Previous
work [25][27][22][18] mainly focus on the the security of
the merchant. And [11] ascribes Android code insecurity to
informal documentation such as Stack Overflow, while official
API documentation is secure but hard to use. However, our
work shows that when it comes to the third-party in-app
payment on Android, even official documents/sample code
released by cashiers lead to the code insecurity, which may
be helpful to improve the security of the whole ecosystem of
third-party payment.

F. Case Studies

We choose several flawed merchant apps to perform real
attacks. It shows that these detected violations of security rules
can directly lead to serious consequence including financial
loss in real world.

1) Order Tampering: We conducted ethical hacking against
two apps to show how attacker tampers the order and purchases
any commodities with an arbitrary price. The first case is an
app used by several restaurants in China to display electronic
menu to customers and allows them to pay for what they order
in app via WexPay or AliPay. The second case is an app for
customer to order laundry pickup and delivery service.

For the first app, we went to a local restaurant and
downloaded the app to order food and drinks. We installed the
app on our penetration test Android phone with Xposed [10],

a popular function hooking framework. After we finished
ordering and entered the table number in the app, we chose
to pay the order via AliPay. The app violated the Security
Rule 1, signing the order information in client app. So before
the invoking of the AliPay SDK in the MA, we hooked the
Java function used to execute SHA1-RSA signing of the order
information in the MA with the help of Xposed. We have
implemented an Xposed module to tamper the price parameter
to only one yuan (CNY, Chinese Yuan, about 0.16 US Dollar)
in the order information and re-signed the message. Then
the TP-SDK successfully accepted the order information and
prompted its payment Activity, asking for paying this order
with one yuan. After we paid this order, the order Activity
in the MA showed that the order is successfully paid with
the original price. And the waiter served the dishes to us
after a while without any doubts. Even after our dinner, our
“less paid” bill did not attract any awareness (we informed
the restaurant later and paid for the meal in the original price,
and informed the vulnerabilities to the app developer), which
indicates that the merchant fails to confirm the notified order
details.

For the second app, we leveraged the flaws similar to
that in the first app. The only difference is the app leaks its
Badpay shared secret key instead of the private key of AliPay.
We observed that this app allowed user to charge for his/her
account beforehand, and each time the user wanted to order
the service, he/she could directly pay a certain amount of fee
for each clothes using the pre-charged cash. So this time our
penetration test aimed at the transaction of charging. Like the
pentest in restaurant, we used the similar way to perform the
attack and successfully charged one hundred yuan into the
account with only one yuan paid from our Badpay account.
And then we spent the money in the account to place an order
and succeeded in washing our clothes without the merchant’s
awareness or doubts. After that, we informed the merchant the
vulnerabilities and paid for the real price of the order.

The attacks against those two apps prove that order tamper-
ing causes money loss and makes influence not only to online
e-stores but also to offline store in real life. Also, we find that
the security flaws of the two apps (leaking their keys in app,
failing to re-confirm the details of notified order to CS) are
pervasive in many other MAs. In other words, such attacks
can be performed to many other merchants.

2) Order Substituting: We proved that Order Substituting
attack can be automated and let user pay for the attacker’s
order without awareness. We employed the attack on a wireless
router of our local area network. Since we control the router,
we can conduct MITM attack to the devices in the same LAN.
We set a MITM proxy on the router to replace self-signed
HTTPS certificate to the original one and decrypt the content
of HTTPS connection.

The victim app in this case is a popular e-Book Reader
with over 20 million downloads. Users can purchase non-
free e-books in this app via payment channels of all four
cashiers. We take the BadPay for the case. The app use HTTP
connections when users browse book lists in the app. When
users want to pay for a book then the connection will turn
to HTTPS but the app fails to check the HTTPS certificate
correctly. So our proxy can intercept, eavesdrop and tamper
the connection. Once a user orders a book and is about to

12



pay, our proxy extracts from the network traffic which book
the user want to buy and the order information including price
(10 yuan in the case). Then our proxy places a new order
request using another app (a take-out food order app) to buy
a burger which is also 10 yuan, and get the order information
from the MS without paying for the burger in the latter step.
Instead, the proxy intercepts the payment order response of
the book and substitutes it with the attacker’s burger order.
As a result, the MA receives the replaced order response and
prompts the user with its payment Activity of the TP-SDK.
Notice that information on the payment Activity of BadPay
only including price, are exactly the same as the price of
the book. User cannot distinguish this replaced order and is
cheated to pay for it. Thus after the payment, the burger is paid
and delivered to us while the e-book is still kept unpaid. When
they paid for the attacker’s order and found their own orders
are still unpaid, they just believe it is the delay of the CS that
leads to a temporary unpaid status. Imagine that if the take-out
food order app here becomes a malicious MA controlled by
the attacker, then the attacker can easily generate an order in
arbitrary price according to the victim’s order and substitute it.
Thus, after user pay for it, the money is directly transferred to
the attacker’s account. Even with those TP-SDKs that display
the merchant name (WexPay and UniPay), the attacker can still
cheat users to pay for attacker’s order in the same app.

3) Unauthorized Querying: KEY Leakage directly leads to
Unauthorized Query attack to merchants as we describe in
Section III-F. A typical case is the unauthorized querying of
arbitrary orders. We take WexPay as an example. Hundreds of
MA leak their secret keys, and we make use of the leaked key
to download all bills of each day of the merchant by simply
making a request to a specific URL address3 provided by
WexPay, along with traversing the ’bill date’ parameters. Our
result includes various merchants whose cash flow of everyday
ranging from millions of yuan (online luxury goods store) to
tens of yuan (social network app). The bill also contains the
details of every transaction in that day, including payer, paying
bank, discount, etc. Obviously, all these information should be
confidential to any unauthorized visitors.

4) App with Multiple Vulnerabilities: Merchant may vi-
olate multiple security rules and the relevant transaction is
vulnerable to not only a single type of attack. To illustrate, we
demonstrate how to acquire free movie tickets in different ways
by exploiting a movie ticket ordering app with an approximate
10 million users. The chosen app allows users to select the
cinema, the movie, and the seats they want, and then buy the
movie tickets online via in-app payment. After the payment
users will get a ticket code and when they get to the cinema,
they can enter the ticket-code on an automated ticket machine
to get the physical movie tickets.

Several security flaws are detected in this app. The problem
occurs when users pay for tickets via WexPay in the app. The
app commits Local Ordering mistake and thus, also exposes
the secret key and notify URL in app. Moreover, the app is
also proved to miss the notified payment confirmation and
signature validation. We perform three kinds of attacks to buy
movie tickets. In the first attack, we hook the order-generation
function based on Xposed in the app and tamper the price to

3’https://api.mch.weixin.qq.com/pay/downloadbill

a particular value to one yuan. Thus we pay for it via WexPay
with only one yuan (or even cheaper if we wish). In the second
attack, we do not tamper the order but follow all the normal
step until the app invokes the WexPay’s payment Activity to
ask us for the payment password to paying for the ticket. Then
we terminate the following steps and directly forged a legal
payment notification of the WexPay to it server. In the third
attack, we repeat the second attack but just send a forged
notification message with incorrect signature to the MS and
the server accepts it. All attacks lead us to available ticket-
codes successfully. We did use the acquired ticket-codes to
fetch the physical tickets at different cinemas and watched the
movie.

Moreover, before informing the merchant and repaying
the tickets we have bought, we wait for a certain period
(thus the merchant could check the collection of all past
orders periodically sent from the cashier) to check whether
the merchant verifies it. In spite of this, until we explain our
behavior to the merchant, they still have no idea about what
has happened. It proves that the attacks can be performed
repeatedly without the merchants’ awareness by an intentional
attackers in real life.

VI. ETHICAL CONSIDERATION

We carefully designed our experiments to avoid ethical
problem. First, we reported all our findings and the behaviors
we performed during the experiments to the related parties and
did what we could do to help them improve the systems. Our
effort was appreciated by these organizations. In detail, we
reported the mistakes in documents/sample codes to WexPay,
AliPay and BadPay. All of them have fixed and updated it.
For instance, [2] shows the updated payment process figure.
The original figure told the developers to generate and sign the
payment order in client app (as we mentioned in Section V-E),
which is obviously insecure. All the three cashiers expressed
their gratitude to us. Also we detected flaws (such as missing
order signature validation) of several merchant servers de-
scribed in Section V-C. We reported these flaws and explained
our behaviors to these influenced merchants as soon as we
carried out our experiments, and helped them to fix these
vulnerabilities. Since hundreds of merchants suffer flaws in
their APPs as we mentioned in Section V-A, it would be too
much work for us to inform all of the merchants. We decided to
report the vulnerable MA list to the Security Response Center
of Tencent, Ant Financial and Baidu, who are responsible
for the security of their whole payment ecosystem (WexPay,
AliPay, and BadPay). They informed all the related merchants
of their security risks, revoked leaked KEY and renewed them.
We use a Web API provided by WexPay as oracle to help
finding the leaked KEY in MA, which need to brute-force the
parameters of the API and may induce potentially heavy load
to WexPay’s server. We did restrict the frequency and times
of invoking the API to avoid potential denied of service attack
against the server. Also if the candidates of three parameters
(mentioned in Section IV-B) are too many, we first filtered
it manually to reduce the test set. After we described our
detecting method to WexPay, they confirmed the issue and
planned to impose some constraints to invoking the API in
future. They even expressed their appreciation to our effective
and efficient KEY Leakage detection method for large-scale
APPs. Second, we ensure no financial damage was inflicted

13



upon the merchants by returning items or re-paying the unpaid
orders, etc. For the victim user in the Order Substituting attack
(described in Section V-F2), we later paid for the e-book order
for him, who is actually a colleague of us. We made use of the
result of downloaded history bills of merchants to evaluate the
feasibility of Unauthorized Query attack, and help to detect
KEY Leakage in MA using WexPay. We not only described
our detecting method in detail to merchants, but also deleted
all these data at once to avoid further exposures.

VII. DISCUSSION

Although our large scale analysis reveals that the ratio
of flawed in-app payment implementations is surprising, we
have to point out that we underestimate the actual danger.
During the TP-SDK identification, our methodology is based
on static code feature. We classify many apps protected by
code packing techniques as not using any TP-SDK, while
they do integrated TP-SDKs. In the detection of flaws in MA,
we adopt static analysis mainly focusing on analyzing DEX
and resource files in APK. Those implementations with native
.so are not analyzed. Since our work presents a systematic
approach to detect those vulnerabilities, we believe the analysts
of merchants and cashiers could adopt our approach to audit
their products before releasing.

Our security analysis mainly focuses on the interfaces of
multi-party involvement in the third-party in-app payment.
We pay less attention to the attacks or flaws only involving
single party (traditional user-to-merchant payment model), for
instance, the merchant order tampering, or denied-of-service
attack on order ID or transaction ID.

VIII. RELATED WORK

A. Insecure Android Third-party SDK

Meanwhile, vulnerabilities or threats introduced by third-
party SDKs in Android applications have also been studied
by many researchers. Chen et al. [13] studied on potentially-
harmful libraries across Android and iOS through clustering
similar packages to identify libraries and analyzing them using
AV systems to find those libs. Wang et al. [26] identified
serious authentication and authorization flaws in applications
that integrate Single-Sign-On SDKs. Li et al. [16] aims to
understand and analyze the security hazards imported by Push
service in Android applications. Wang et al. [24] and [12]
demystified and assessed the vulnerabilities of OAuth protocol
on mobile platform, which often introduced by third-party
providers as SDKs in Android applications. However, the
payment SDK in Android applications has never been studied
before. We propose a comprehensive methodology to detect
various security rule violations in those apps who embed
third-party payment SDKs. All of these flaws lead to serious
consequence and result in financial loss for different parties
involved.

B. Android App Vulnerabilities

The security analysis of vulnerabilities in Android applica-
tion has also become hot spot these years, with the dramatic
growth in mobile users. It’s common that misuse of security
libraries leads to flaws in apps. Egele et al. [14] studied
the misuse of cryptographic API in Android applications and

summarized basic rules in using cryptographic libraries. Fahl et
al. [15] reveal several types of flaws in the use of SSL/TLS by
Android application and detect potential SSL vulnerabilities.
SMV-Hunter [20] combined static analysis and dynamic vali-
dation to improve the precision of detecting unsafe SSL use.
Reaves et al. [19] performed security analysis on SSL/TLS
certificate verification, non-standard cryptography, access con-
trol and information leak of branchless banking applications,
and found significant vulnerabilities. Different from all of these
work, our analysis of security flaws caused by apps integrating
third party in-app payment libraries. We reveal that these
flaws during in-app payment caused both by merchant apps
and third-party payment SDK providers. Among these flaws,
KEY Leakage has been studied before. Both PlayDrone [23]
and CredMiner [29] try to detect token exposure of AWS
and OAuth in Android applications. However, we adopt a
more efficient and accurate methodology, combining local
program analysis and a remote Web API, to detect such
flaws in third-party payment. Besides, our work covers the
security threats and flawed implementations throughout the
whole payment process, rather than focusing on a particular
type of vulnerability detection.

C. E-Commerce Vulnerabilities

The security analysis of e-commerce and payment has
attracted the attention of researchers in recent years, since
vulnerabilities may cause great impact and financial loss. As
far as we know, the only similar work is implemented by Virtu-
alSwindle [17], which can perform an automatic attack against
in-app billing service. However, it seems to be just a small part
of our work. First, the in-app billing service described in the
paper is just one scenario of the in-app third-party payment.
The service is simpler and less popular compared to our
research targets. Second, VirtualSwindle can only launch one
type of attack and the adversary model assumed in the paper is
too limited. However, our work describes four types of threats
and attack model is more diversified. Third, only 85 Android
apps were studied in the paper compared with the thousands of
samples in our work. Overall, we perform a more large-scale
and systematic analysis to third-party in-app payment. Our
work focuses on finding all flawed implementations throughout
the whole payment process, not only launching one type of
attack.

Wang et al. [25] are the first to analyze logic vulnerabilities
in Cashier-as-a-Service based web stores, and found several
logic flaws manually. Sun et al.[22] propose to detect logical
vulnerabilities in e-commerce application through static anal-
ysis of available program code. Pellegrino et al. [18] proposed
the idea of black-box detection of logical vulnerabilities in
e-shopping applications Sudhodanan et al. [21] propose an
automatic technique based on attack patterns for black-box,
security testing of multi-party web applications. InteGuard [27]
offers dynamic protection of third-party web service integra-
tions including cashier service in merchants’ websites.

All of the work mainly target on e-commerce in web
application, while we focus on mobile platform. Our detection
object is mainly flawed implementations in Android applica-
tions using third-party in-app payment SDKs, since apps in
mobile OS redefine the trust boundaries. Different from third-
party payment of Web service, client application with TP-

14



SDK embedded plays an important role in mobile payment
scene. Thus our work involves large scale detection on flawed
app according to mobile application’s characteristics. while
previous work focus on server flaw detecting, which can hardly
be large scale. Besides, we also present security rules to every
party of in-app payment scene, analyze and question the cause
of these payment flaws in-depth.

IX. CONCLUSION

Insecure In-app payment is becoming a main threat to
mobile ecosystem as more and more online transactions are
transferring from website to app. Different from traditional
web payment, in-app payment involves more sophisticated
implementation details and the process is often obscure. To
demystify processes of popular in-app payments and reveal
potential security risks, we conduct a comprehensive analysis
on mainstream third-party in-app payment schemes in Android
Apps. Our analysis investigates implementations of four in-app
payments and concludes a series of security rules that should
be obeyed. We not only pinpoint the serious consequence of
violating security rules, but also detect these flawed imple-
mentations. Our statistics paint a sobering picture–hundreds
of apps integrated with third-party in-app payment SDKs are
vulnerable. Besides, our further investigation indicates that
cashier is mainly blame for these flawed implementations.
We hope our study can remind and guide developers of both
merchants and cashiers to build more secure in-app payments.

ACKNOWLEDGMENT

We would like to thank our shepherd, Kevin Butler, and
the anonymous reviewers for their insightful comments that
greatly helped improve the manuscript of this paper. This
work is partially supported by the Technology Project of
Shanghai Science and Technology Commission under Grants
No.15511103002, and the Key Program of National Natural
Science Foundation of China (Grants No. U1636217). The
corresponding author of this paper is Yuanyuan Zhang.

REFERENCES

[1] AliPay. https://open.alipay.com.
[2] AliPay payment process. https://doc.open.alipay.com/doc2/detail?

treeId=59articleId=103658docType=1.
[3] AndroGuard. https://github.com/androguard/androguard.
[4] BadPay. https://b.baifubao.com.
[5] Myapp Android Market. http://android.myapp.com/.
[6] OAuth. http://oauth.net/.
[7] ProGuard. http://proguard.sourceforge.net/.
[8] UniPay. https://merchant.unionpay.com/join/index.
[9] WexPay. https://pay.weixin.qq.com.

[10] Xposed. http://repo.xposed.info/.
[11] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.

You get where youre looking for: The impact of information sources on
code security. In Proc. of IEEE Symposium on Security and Privacy,
37nd, 2016.

[12] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. Oauth
demystified for mobile application developers. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, 2014.

[13] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
and Y. Zhang. Following devil’s footprints: Cross-platform analysis of
potentially harmful libraries on android and ios. In Proc. of IEEE
Symposium on Security and Privacy, 37th, 2016.

[14] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical
study of cryptographic misuse in android applications. In Proc. of
the 2013 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2013.

[15] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith. Why eve and mallory love android: An analysis of android ssl
(in) security. In Proceedings of the 2012 ACM conference on Computer
and communications security, 2012.

[16] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han.
Mayhem in the push clouds: Understanding and mitigating security
hazards in mobile push-messaging services. In Proc. of the 21st ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[17] C. Mulliner, W. Robertson, and E. Kirda. Virtualswindle: An automated
attack against in-app billing on android. In Proceedings of the 9th ACM
symposium on Information, computer and communications security,
2014.

[18] G. Pellegrino and D. Balzarotti. Toward black-box detection of logic
flaws in web applications. In NDSS, 2014.

[19] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R. Butler. Mo (bile)
money, mo (bile) problems: analysis of branchless banking applications
in the developing world. In 24th USENIX Security Symposium (USENIX
Security 15), 2015.

[20] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan. Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps. In Proc. of the 21st Annual Network
and Distributed System Security Symposium (NDSS, 2014.

[21] A. Sudhodanan, A. Armando, R. Carbone, and L. Compagna. Attack
patterns for black-box security testing of multi-party web applications.
In Proc. of the 23rd Network and Distributed System Security Sympo-
sium (NDSS), 2016.

[22] F. Sun, L. Xu, and Z. Su. Detecting logic vulnerabilities in e-commerce
applications. In Proc. of the 21st Network and Distributed System
Security Symposium (NDSS), 2014.

[23] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google
play. In ACM SIGMETRICS Performance Evaluation Review, 2014.

[24] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu. Vulner-
ability assessment of oauth implementations in android applications.
In Proceedings of the 31st Annual Computer Security Applications
Conference, 2015.

[25] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to shop for free
online–security analysis of cashier-as-a-service based web stores. In
Proc. of IEEE Symposium on Security and Privacy, 32nd, 2011.

[26] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich.
Explicating sdks: Uncovering assumptions underlying secure authenti-
cation and authorization. In USENIX Security, 2013.

[27] L. Xing, Y. Chen, X. Wang, and S. Chen. Integuard: Toward automatic
protection of third-party web service integrations. In Proc. of the 20th
Network and Distributed System Security Symposium (NDSS), 2013.

[28] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu. Appspear:
Bytecode decrypting and dex reassembling for packed android malware.
In Research in Attacks, Intrusions, and Defenses. 2015.

[29] Y. Zhou, L. Wu, Z. Wang, and X. Jiang. Harvesting developer
credentials in android apps. In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, 2015.

15


