
iCryptoTracer: Dynamic Analysis on Misuse of
Cryptography Functions in iOS Applications ?

Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu

Dept. of Computer Science and Engineering
Shanghai Jiao Tong University

Shanghai, China
E-mail: yyjess at sjtu.edu.cn

Abstract. Cryptography is the common means to achieve strong data
protection in mobile applications. However, cryptographic misuse is be-
coming one of the most common issues in development. Attackers usually
make use of those flaws in implementation such as non-random key/IV
to forge exploits and recover the valuable secrets. For the application
developers who may lack knowledge of cryptography, it is urgent to pro-
vide an efficient and effective approach to assess whether the application
can fulfill the security goal by the use of cryptographic functions. In this
work, we design a cryptography diagnosis system iCryptoTracer. Com-
bined with static and dynamic analyses, it traces the iOS application’s
usage of cryptographic APIs, extracts the trace log and judges whether
the application complies with the generic cryptographic rules along with
real-world implementation concerns. We test iCryptoTracer using real
devices with various version of iOS. We diagnose 98 applications from
Apple App Store and find that 64 of which contain various degrees of
security flaws caused by cryptographic misuse. To provide the proof-of-
concept, we launch ethical attacks on two applications respectively. The
encrypted secret information can be easily revealed and the encryption
keys can also be restored.

1 Introduction

Mobile devices such as smartphones and tablet computers are becoming the ves-
sel of personal information such as contact list, physical location, social informa-
tion and even banking service, online payment. As the popularity of such devices
grows, the malicious software have the increasing impact on personal privacy.
Current mobile OSes(mainly Android and iOS) use layered security strategies
to endow the dominance to the end-users to control the access of the sensitive
data. Aiming at providing high security assurance, iOS is designed with various
security features. At system level, full-disk encryption, ASLR [1], sandboxing

? This work is supported by The National Key Technology R&D Pro-
gram(2012BAH46B02), National Science and Technology Major Projects (Grant
No.2012ZX03002011), and Technology Innovation Project of Shanghai Science and
Technology Commission (No.13511504000).

profile and privilege assignment are adopted to fulfil access control policy [2].
At applications level, the Apple App Store scrutinizing on the applications also
reduces the risk of malicious behaviors in the apps as a beneficial supplement.
Besides for those built-in security features, third-party iOS developers resort
to modern cryptographic algorithms to provide stronger protection on sensitive
data.

It is possible that the emphasis on cryptographic techniques for protecting
information mitigates the attention to the issue of cryptographic usage. The
security of the primitives are provided by intellectual properties or industrial
standards. There is a tendency to focus on problems that are mathematically
interesting to the exclusion of implementing problems which must be solved
in order to actually increase operational security. We’ve seen lots of security
applications contradicting to some basic cryptography applying rules caused by
developer’s ignorance of general cryptographic usage guidelines, or sometimes
the ambiguous documentation misleading to defective implementations. Both
facts could result in software vulnerability or privacy leaks.

The well-known Citibank iOS application [3] and Starbucks application [4],
for instance, storing the customer’s privacy information such as payment pass-
code, bank account number, etc. The Verge has reported that Starbucks’ iPhone
application stores user passwords in plaintext. By connecting iOS device through
iTunes, an attacker can easily retrieve the password and payment records. There-
fore, it’s crucial to evaluate the correctness of cryptographic usage inside the
emerging third-party iOS applications.

As a contrast to the open-source Android system, iOS is a proprietary oper-
ating system and is relatively close. Developing a third-party security analysis
extension for iOS system requires essential work and is difficult for lacking de-
tails of the operating system. Recent studies on iOS application mainly apply
static analysis to detect security vulnerability such as privacy leak. Egele et al.
proposed PiOS [5] based on static analysis using a control-flow graph to identify
from where the sensitive data leaks. However, static analysis tends to be less ac-
curate due to the dynamic messaging mechanism of iOS applications, which are
primarily developed with Objective-C. Most iOS applications are heavily based
on event-driven schemes. Simply analyzing an application with static analysis
is not feasible because the dynamic events can not be predicted, the inputs can
not be constructed either, parameters may be generated while executing, and the
return value is unforeseeable. Such dynamic characteristic determines that many
information can only be monitored accurately at runtime and in this situation
dynamic analysis would be a better choice.

Dynamic analysis of iOS applications is facing lots of challenges. One chal-
lenge is that encryption is input-related, so that some data should be provided.
iOS Applications are GUI-rich, and most of input areas are of UITextField com-
ponent, and sometimes files should be provided as input, so manual work is
inevitable during test. To study iOS kernel and Objective-C runtime to dynami-
cally observe the application running in iOS, we have to resort to instrumentation

and API hooking techniques. To the best of our knowledge, no previous dynamic
analysis on cryptographic usage has been proposed on mobile system so far.

An approach to diagnose the implementation code to assure the proper va-
lidity of cryptographic usage is in demand. We present iCryptoTracer to fulfill
such purpose. As a cryptographic usage vetting system (we use crypto-vetting
to indicate the whole diagnosis process in the following) based on static and
dynamic analysis techniques, iCryptoTracer situates at Core OS layer gathering
crucial information (we call it crypto-trace in this work) at iOS runtime that
cannot be observed by static analysis, such as the sequence of API calls, argu-
ments and return values. Afterwards, iCryptoTracer conducts analysis on the
crypto-trace files according to some generic rules to diagnose the vulnerability
of usage. We diagnose 98 typical security-oriented iOS applications and find out
64 of them contain various degrees of security flaw in cryptographic misuse as-
pect. We validate the effectiveness of iCryptoTracer diagnosis by successfully
launching ethical attacks on two iOS applications as proof-of-concept, including
a banking application and a password managing application.

The rest of the paper is organized as follows: Section 2 presents the pre-
liminaries on the techniques we adopt to implement iCryptoTracer. Section 3
describes the design philosophy of our work. The implementation of iCrypto-
Tracer is presented in Section 4. As well as the evaluation of our work in section
5, we also present typical ethical attacks against two applications that have
been judged as weak implementation of cryptography by iCryptoTracer. Section
6 lists related work, Section 7 is about the limitation, and Section 8 concludes
the paper.

2 Messaging in iOS

In this section, the basics of Objective-C runtime, message swizzling and Com-
mon Crypto libSystem will be briefly introduced.

2.1 Messaging

Objective-C is a strict superset of the C programming language that adds
object-oriented features to the basic language. An innegligible characteristic of
Objective-C is messaging, i.e. objc msgSend. The invoking of object method
in Objective-C is not direct but through virtual method tables(vtables), i.e., a
message is sent to a receiver and these messages are handled by the dynamic
dispatch function objc msgSend. A message consists of the receiver of the mes-
sage(object in Figure 1), method name(method), parameter names(para namei)
and their argument value(argj). The method name and parameter names are
called selector. There is a one-one mapping between selectors and the code re-
gion of the method(see Figure 2), i.e. selectorA mapping on IMPa, selectorB on
IMPb, and so on. Then, objc msgSend will forward the message to the receiver
to execute the code region.

target object method:arg0 para name1:arg1 para name2:arg2 para nameN:argN

selector

Fig. 1. A syntax of a message

2.2 Method Swizzling

As we discussed above, there exsits mapping between selector and its implemen-
tation. Objective-C provides a mechanism to allow developers to exchange or
modify the mapping, which allows a selector to be redirected at runtime. This is
called method swizzling. Consider selectorA mapping IMPa and selectorB map-
ping IMPb, we can exchange their mapping and the result is selectorA mapping
IMPb and selectorB mapping IMPa(see Figure 3). Also, for a selector, we can
modify its function by redirecting it to another implementation developed by
ourselves(Figure 4). By utilizing modification, API hook is enabled, which is
essential in iCryptoTracer ’s tracing module(see Figure 5).

selectorA

selectorB

selectorC

IMPa

IMPb

IMPc

Fig. 2. Method Swizzling - Original map-
ping

selectorA

selectorB

selectorC

IMPa

IMPb

IMPc

Fig. 3. Method Swizzling - Exchange

selectorB

selectorC

IMPb

IMPc

IMPnew

Fig. 4. Method Swizzling - Modification

Selector_original IMP_orignal

Log
IMP_orignal

IMP_new - API Hook

Fig. 5. Method Swizzling - Modification

2.3 Common Crypto Library in iOS Security Framework

Apple provides open source Common Crypto library for cryptographic usage.
Being a part of Security Framework in iOS, the library consists of various kinds

of cryptography APIs, such as symmetric encryption, HMAC and digests, etc. By
calling API from the lib, developers can encrypt target data with some algorithm.
However, documentation going with the lib is not very specific, and explanation
of cryptography is not provided. As a result, simply calling API from Common
Crypto library does not necessarily mean data is well protected by encryption.

3 System Design

In this section, we elaborate the design of iCryptoTracer.

3.1 Overview of iCryptoTracer

iCryptoTracer diagnoses the cryptographic usage adopting static-dynamic com-
bined analysis on a target security application. The structure of iCryptoTracer,
as depicted in Figure 6, is designed to meet the requirement that the diagnosis
of iCryptoTracer should be intelligible. iCryptoTracer monitors overall crypto-
graphic functions in the application, meanwhile, it is vigilant against the threats
to sensitive data, which is the purpose we design the system. The intuition be-
hind is that a complete sensitive information protection scheme must be based
on a series of proper cryptographic functions. In other word, as long as the sen-
sitive information is not confined inside a closure area, i.e., encrypted packet or
file using cryptographic functions, it is of insecure status and may be illegally ac-
quired. Hence, it is able to reveal potential insecure data protection or sensitive
data leakage through checking the improper using of cryptographic functions in
an application.

Objective-C
RuntimeObjective-C

Runtime

Cryptographic
Diagnosing Steps

(configurable)

Item 1 Item 2

Item n……

Target App

Target App
data sink

profile

③

Target App
crypto-trace

file

Static
analysis

①

②

Target App
crypto funcs

profile

④

iCryptoTracer
Diagnosing Engine

⑥

Target App
diagnosis

result

⑤

Objective-C
Runtime

iCryptoTracer
Tracing Engine

③

Device 1

Device 2

Device 3

Fig. 6. Overview of iCryptoTracer architecture

To accurately evaluate the improper using of cryptographic functions, we
mainly take account of the sensitive data when it is at stake such as sending
through network or writing to a file and make the following assumptions: First,
the security of the cryptographic primitives, which are the basic blocks in cryp-
tography(e.g., AES block cipher, SHA-512 hash functions, etc.), are guaranteed
by industrial standards and have been verified widely. Application should only
use standard cryptographic primitives to protect the data. Second, the sensitive
data of interests usually involves in cryptographic operations under specified
cryptographic usage strategy(i.e., cryptographic protocols). Cryptographic us-
age strategy is the operating parameters or operating orders of cryptographic
primitives on sensitive data. Even the primitives are solid, a proper usage strat-
egy is also crucial for building a solid protection scheme.

Based on these assumptions, iCryptoTracer tries to locate two typical flaws:
1) the sensitive data, when sending through network or writing to a file, is not
protected with any cryptographic functions. Sensitive information is the critical
protege and should be under the protection of cryptographic operations. If there
exists no cryptographic operation related to sensitive information, the protection
must be insecure. 2) the sensitive data, when sending through network or writing
to a file, is protected with cryptographic functions but with improper usage
strategy.

Among various factors to concern in security context, iCryptoTracer takes
the following three types of contents into account: 1) sensitive information to
be protected, 2) cryptographic primitives, and 3) cryptographic usage strategy.
However, for the dynamic analysis of iOS application, it is very difficult to de-
ploy advanced information flow tracking techniques such as taint analysis. The
approach adopted by iCryptoTracer is therefore a synthetic one. That is to say,
our approach synthesizes information collected from separated spots during the
runtime and diagnoses the problems. It first scans the target application to spot
and put surveillance on all the possible data sinks. Data sinks are spots that are
tightly related to several specific system APIs, such as network I/O and file I/O
APIs. The information of data sink is gathered by static analysis on applica-
tions. Then, iCryptoTracer scans and records the cryptographic function APIs
locations in the application, especially those that wraps those I/O as the diag-
nosis objectives for further use. After these two steps, iCryptoTracer generates
the cryptographic functions profile and the data sink profile(step 1-2 in Figure
6). With the guide from cryptographic functions profile and data sink profile,
iCryptoTracer monitors those API calls at runtime adopting message swizzling
technique. Those related function calls are redirected to the tracing engine of
iCryptoTracer, and all useful information including sequence of API calls, argu-
ments, return values, etc. are logged as the crypto-trace file (step 3-4 in Figure
6). Finally, iCryptoTracer synthesizes information recorded in the crypto-trace
file with its diagnosis engine and judges whether a cryptographic function usage
flaw exists in the application.

3.2 Static Analysis

The iOS applications(in the form of ipa file) are downloaded from Apple Store,
which are encrypted with device-dependent key. We first extract the binary of
the applications by means of reverse engineering on the ipa file. To identify the
crucial API invoking points, we filter the API calls concerning data operation,
transmission and encryption and resolve the location into two files crypto funcs
profile and data sink profile.

Static analysis helps us to locate the position of the APIs, which aids the
system to narrow down the APIs to observe during the dynamic analysis phase.
As we described in the previous section, static analysis is not capable of collecting
sufficient runtime information, so more precise information on the target APIs
in the profiles will be collected during runtime.

3.3 Log Tracing

The messaging realizes the redirection of the system calls to cryptographic APIs.
As indicated in two profiles we acquired from static analysis, those specific calls
are wrapped and extended with a logging function. It takes record of the relevant
API information, such as method names, arguments, return values, etc. and
stores them into a log file. A typical log entry is as below:

1 func : CCCrypt
2 a lgor i thm : kCCAlgorithmAES128
3 dataIn : tN/m8LhVi5xRsjKWnvFvXPz6y5qPN0HZknNQHqiLs0Q=
4 dataOut :2088002061679122
5 dataOutAvai lable : 48
6 iv : ! zmcbbmmyyana . . .
7 key : c x l b y l v y f r e v e r ! !
8 op : kCCDecrypt
9 opt ions : kCCOptionPKCS7Padding

10 returnValue : 0

In this entry, CCCrypt is the name of the method the application called.
The algorithm field reveals the information of the kCCAlgorithmAES128 cryp-
tographic algorithm invoked inside method CCCrypt. In this case, it is an AES
encryption with 128-bit block. The fields of iv and key indicate the IV and
encryption key in use, and the options field reveals the data padding method.

3.4 Trace Log Diagnosis

After the log tracing phase, the collected log is delivered to the diagnosis en-
gine(Figure 6). In order to ensure a comprehensive analysis, we introduce cross-
reference diagnosis to analyze the trace logs from different security context. We
collect cryptographic logs for the same iOS application executed on various de-
vices with different versions of operating system. The diversity we introduced

tends to bring multiple trace logs. Then the diagnosis engine could detect pos-
sible invariance from the synthesis of several logs, which usually indicates the
non-randomness iCryptoTracer is designed to have a configurable diagnosis en-
gine, the successive diagnosis exam items should be defined carefully. There are
quite many generic cryptographic rules in security application developing [6] [7],
such as the choice of encryption mode, randomness of IV and encryption keys,
etc. Based on those rules and a full study of Common Crypto library, diagnosis
will be conducted on the log following the exams as below:

Item 1: Using constant encryption keys The randomness of the encryp-
tion keys is mandatory. Intuitively, a constant key hard-coded can be easily
observed, thus the resulting secrecy of encryption is not guaranted.

Item 2: Using a non-random IV for CBC encryption As elaborated in [7],
the CBC-mode construction should always use a random IV. However, a com-
mon error is to use fixed (usually all zero) IV in real-world implementations.

Item 3: Using stateless encryption There are mainly two kinds of encryp-
tion interfaces in Common Crypto library: the stateless encryption APIs and
the stateful ones. The stateless encryption is deterministic, that is, if the
same message is encrypted twice with the same key, the identical ciphertext
is returned. A deterministic encryption is not secure, because a distinguisher
which distinguishes message streams with repeated messages can be created
by detecting repeats in the encrypted message blocks [6].

4 Implementation

We implement the design of iCryptoTracer (see Figure 6) in a prototype that
supports iOS version from 6.1.3 to 7.0.6. iCryptoTracer requires a jailbroken
device as its runtime environment to inject a hooking dynamic library into the
application during the execution, which redirects and logs target APIs. In the
following, we present selected implementation details of iCryptoTracer.

4.1 Static Analysis

Common ipa files downloaded from App Store are encrypted so that they should
be decrypted before the analysis stage. To decrypt the analyzed app, iCrypto-
Tracer resorts to Clutch [8] to dump the code segment of an ipa file in memory
and fix the encrypted ipa file as a workable executable on a jailbroken device.
Then iCryptoTracer implements a script of IDA to statically analyze the binary
code to find out the imported APIs that are concerned.

4.2 Tracing Engine

As the major part of dynamic analysis at Objective-C runtime, tracing en-
gine(Figure 6) locates in between Core OS and Core Service layers. It is mainly
based on message swizzling introduced in Section 2.

The main idea of tracing engine is to redirect the API calls and dynamically
log information such as parameters based on the profiles at runtime. We realize
this by utilizing method swizzling (Section 2.2), that is, replacing Selectororignal’s
original mapping implementation, IMPoriginal to a new one, IMPnew, and the
latter including log functions (added) and IMPoriginal, which enables hooking
and logging, and makes sure the original method be executed (see Figure 5).
Through this way, both hooking and logging are achieved at the same time.

Tracing engine has been implemented to monitor three types of APIs: 1)
cryptographic functions, 2) file I/O APIs, and 3) network I/O APIs. The cryp-
tographic functions are provided by Common Crypto library of the iOS. Any
invoking of cryptographic functions in this library are completely recorded as
part of the trace. The tracing of the data flow is obtained by hooking the file
I/O and network communication related APIs. When the target application is
running, and if any of those APIs are invoked, the related information such as
parameters will be recorded as part of the trace.

4.3 Diagnosis Engine

Diagnosing engine is responsible for three tasks: 1) comprehending the crypto-
trace logs, 2) detecting invariance in the synthesis of the logs, and 3) applying
the exam rules and output diagnosis result.

Notice that the log obtained from tracing engine is actually incomprehensible
byte stream from memory, so parsing on the trace file is required. Diagnosis en-
gine contains a parsing module to resolve data according to API specifications,
and data is encoded with base64 and saved in a SQLite database, which can
be decoded and analyzed later in the following diagnosis steps. Then, entries in
multiple cryptographic logs are synthesized and Diagnosis engine will extract
each field of the same cryptographic operation in multiple logs. Finally, given the
synthesized information, Diagnosis engine exams the security weakness accord-
ing to the three exam items we proposed in Section 3. The Diagnosing engine
is perceptible to determine which exam item the function breaks, so the target
application that passes through all the exams will get a higher evaluation value.
We define three security degree for diagnosed iOS applications, critical, weak,
and healthy, see Table 1.

Critical We define that if any of the cryptography uses in this application does
not pass one or more item exams, and this encryption operation is happening
at one or more data sinks to be critical.

Weak We define that cryptography use which does not pass all item exams, but
the encryption operation is not at any data sink to be weak.

Healthy We define the cryptography which pass all item exams to be healthy.

After the evaluation of the cryptographic use of a target iOS application,
iCryptoTracer outputs a file called diagnosis result at the end of the diagnosis
procedure. The overall evaluation result (Critical, Weak, or Healthy) is given,
and the locations of suspicious encryption functions and their relevant data sink

Table 1. Applying the diagnosis based on the items

Pass all the item exams Happen at data sink

Healthy YES -

Weak NO NO

Critical NO YES

are included as well. Given the diagnosis result, not only the application users,
but also the program developers can benefit from the detail introspection for
next stage improvement on their works.

5 Evaluation

In this section, we analyze the effectiveness of iCryptoTracer by applying on
the selected security-oriented applications downloaded from Apple’s App Store.
The results are carefully analyzed to measure the security of the target appli-
cation. Finally, we give two specific cases on misuse of crypto-functions. An
ethical attack is launched against the applications to prove the effectiveness of
iCryptoTracer in locating the weakness of a security-oriented application.

5.1 Selection of Test Apps

To demonstrate the effectiveness of iCryptoTracer, 98 typical security-oriented
applications from the official Apple App Store are chosen as the target applica-
tions, see Table 2. These applications contain privacy related information, such
as online payment password, bank account number, SMS, confidential files, etc.
These applications are relative to online bank and online payment, or personal
passwords management, such as Alipay and 1password. The former is the most
popular online payment application and it has been downloaded for more than
10 million times from China, and the latter is a popular application that stores
and manages nearly all the personal passwords and files in a centralized way.

5.2 Testing on Selected Apps

iCryptoTracer has been implemented on several testbeds that supports from
iOS 6.1.3 to iOS 7.0.6 on various models of iPhone and iPad. 98 selected security
applications are diagnosed through iCryptoTracer. The diagnosis procedure only
requires manually installation of those target applications on testbed devices.
The running of the diagnosis is fully automatic and silent at backstage. Each of
the application receives 10 different forged inputs, e.g., 10 forged bank account
numbers for online banking application, or 10 different files for file protection
applications, in order to extend the analysis results.

According to the outputs, we have in Table 2 the number of the applications
with defective implementations we have found during the diagnosis. The results

show that 64 out of 98 target applications have various security flaws. Moreover, 8
of 64 unhealthy applications are diagnosed as critical. As to critical applications,
it require little effort to recover the secret message sent via data sinks. We give
two ethical attacks in the following section. The overall diagnosis results are
listed in Table 2.

Table 2. Diagnosis results of 98 applications

Category Total Healthy Weak Critical

online bank 28 8 20 0

mobile payment 22 6 16 0

account protection 16 8 5 3

file protection 32 12 15 5

5.3 Case Studies

As we can see from the evaluation section, there exist a lot of applications break-
ing encryption rules, and some of them can be easily attacked. We select two
typical applications for further study.

Ethical attack on a banking application We use iCryptoTracer to eval-
uate a banking application (for security issue we hide the actual name of the
application) that is used for querying user’s account activities and performing
e-trading. This application is diagnosed as critical, which means there exists a
misuse of cryptographic function related to data sink. In detail, this application
does not pass the examines on Exam item 2 and 3. It employs non-random key
and an empty IV, see the first record in Table 3.

The misused function is an AES encryption with an empty IV and a fixed
key, i.e. the same key is repeatedly used in different cryptographic contexts.
We run the same banking application on a non-jail-break iOS device, and pro-
vide username and password as input. In a configured WLAN with a sniffer,
we are able to eavesdrop the encrypted communication data between the app
and server. By applying the encryption algorithm, fixed key and empty IV ob-
tained from iCryptoTracer, we can decrypt the encrypted communication data,
including username and password, which should be well protected by the app.
Furthermore, we successfully use the decrypted username and password to log
into the on-line bank.

Ethical attack on a password management application We perform the
diagnosis on a password management application, which claims to be able to
protect user’s privacy through encryption and the encryption algorithm applied
is of open standard. In order to use the application, users have to enter a pass-
word, which proves to be irrelevant to encryption but only for authorization. The

Table 3. Case Study

Encryption Key IV Option
Key

Repetition

AES 128 njwftwr,xjtxrft. No Padding YES

3DES 1234567890def13579ace init vec PKCS7Padding YES

application can automatically encrypt user’s privacy data, such as passwords and
files, and save on the device. For the sake of convenience, the encrypted data
can be exported for backup through iTunes. It’s true that the application utilizes
3DES for encryption, but from its tracing log obtained from iCryptoTracer, we
find out that the application’s encryption is of serious flaw, i.e. a simple constant
key and a fixed IV are used in different encryption contexts. First, we encrypted
test files with the application on a non-jailbreak iOS device, and then exported
encrypted data to a computer with the help of iTunes. By applying the constant
key and fixed IV (see 3) logged by crypto-trace file in iCryptoTracer, all test files
are instantly decrypted.

6 Related Work

With the development of mobile system, it gains more and more popularity
and attention from researchers, especially on Android and iOS. MoCFI [9] and
CFR [10] are both designed to defend iOS applications from control flow attacks.
They are of system’s security, but have nothing to do with encryption analysis.
Egele et al. presented an approach - PiOS [5], which is able to automatically
create control flow graphs (CFG) from decrypted iOS binaries and then perform
reachability analysis on CFGs to identify possible leaks of user’s privacy data
from device to third parties. The test results of PiOS demonstrate that a majority
of iOS applications leak the device ID. Han et. al [11] also presented a way
by massively examining security-sensitive APIs to detect potential access to
sensitive resources that may cause privacy breach or security risks. Static analysis
is a kind of reference and more proof is needed from dynamic analysis.

Due to the dynamic characteristic of Objective-C, runtime attack aimed at
iOS system is invented [12] [13]. The attack results show that by dynamically
loading methods, static analysis can be easily bypassed. As a complement for
static analysis, dynamic analysis for mobile system has already been presented,
such as TaintDroid [14]. However, Android and iOS are totally different mobile
systems and the technique on Android can never be implemented on iOS due
to its close-source. Szydlowski et al. presented a dynamic way to analyze iOS
applications [15], whose method is to analyze iOS applications in a static way
at first, and then set breakpoints at objc msgSend methods while running. The
most obvious limitation is there will be a lot of breakpoints during running
process, which may crash the running application. Also, by setting breakpoints

at every objc msgSend methods, the specific method is unknown, and there will
be too much data obtained from registers and memory.

Bhargavan et al. [16] illustrate tools that can be used to verify the security of
cryptographic protocol implementations, and Mitchell et al. present Murϕ [17]
which is able to detect vulnerabilities in cryptography and security protocols.
Both of their work are achieved on PC platform. For cryptographic misuse anal-
ysis on mobile system, Egele et al. developed a light-weight static analysis ap-
proach to check for common flaws of encryption use for Android apps, CRYP-
TOLINT [7]. Its main idea is to use static program slicing to identify flows be-
tween cryptographic keys, initialization vectors and similar cryptographic mate-
rial and the cryptographic operations. Anyway, it is inevitable that static analysis
misses the data generated during runtime and sometimes error-prone, especially
when the binary program can load function or methods in a dynamic way. Our
work is similar to CRYPTOLINT, but we apply the analysis in a dynamic way on
iOS and can be a better complement to static analysis. Though iCryptoTracer ’s
efficiency may not as good as CRYPTOLINT, it’s more specific and accurate.

7 Limitation

iCryptoTracer diagnoses limited types of APIs and its information at the spe-
cific surveillance location such as data sinks, so it can not be categorized as
a full-grained information flow analysis system. Moreover, for some developers,
they may resort to a third-party cryptography library instead of Apple’s Com-
mon Crypto libSystem, iCryptoTracer is not yet capable of analysing third-party
security libraries. To achieve this, iCryptoTracer has to be equipped with crypto-
graphic primitive identification and other advanced dynamic analysis techniques,
which will be presented in our other works soon.

While iCryptoTracer can automatically analyze and verify the cryptography
use of iOS applications, it still can not verify the security of protocol. During
tracing process, in order to provide input data for GUI-rich applications, human
interaction or manual work for input is required, which lead to lower efficiency
than static analysis.

8 Conclusion

In this paper, we proposed a diagnosis system iCryptoTracer for security iOS
applications to assess whether the fashion of cryptographic usage leads to a
proper notion of security. The diagnosis process is a staged procedure combining
static and dynamic analysis techniques. For static analysis, we can efficiently
locate the methods to observe later on during iOS runtime. Dynamic analysis
helps to collect method call information that cannot deduce at static analysis
stage.

Designed as an automatic diagnosis system, iCryptoTracer works silently at
backstage monitoring the running of the target applications. In the end, iCrypto-
Tracer outputs the diagnosis result by given rules and steps. A target application

can be considered as healthy only when it passes all the item exams. Any weak
or critical application will be diagnosed with a detail result including the defec-
tively implemented APIs and their corresponding data sinks locations.

We have diagnosed 98 security iOS applications and found 65.3% of which
are suffering from various degree of vulnerability from defective implementation
of misuse. Further study on the misuse leads to two ethical attacks on two chosen
applications, a banking application and a password management application. We
successfully recovered the personal information encrypted and sent via network.

References

1. Esser, S.: Antid0te 2.0 - ASLR in iOS. In: Hack In the Box(HITB). (2011)
2. Apple: iOS Security Guide (2014)
3. Staff, P.: Citibank admits security flaw in its iPhone app.

http://nypost.com/2010/07/26/citibank-admits-security-flaw-in-its-iphone-app/
4. Hollister, S.: Starbucks admits its iPhone app stores unencrypted user pass-

words. http://www.theverge.com/2014/1/15/5313648/starbucks-admits-ios-app-
stored-passwords-in-plain-text

5. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in
iOS Applications. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS). (Feburary 2011)

6. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography.
http://cseweb.ucsd.edu/ mihir/cse207/classnotes.html

7. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An Empirical Study of
Cryptographic Misuse in Android Applications. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’13, New
York, NY, USA, ACM (2013) 73–84

8. Cracks, K.J.: Fast iOS executable dumper. https://github.com/KJCracks/Clutch
9. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Stefan: MoCFI:

A framework to mitigate control-flow attacks on smartphones. In: Symposium on
Network and Distributed System Security (NDSS). (Feburary 2012)

10. Pewny, J., Holz, T.: Control-flow Restrictor: Compiler-based CFI for iOS. In: Pro-
ceedings of the 29th Annual Computer Security Applications Conference. ACSAC
’13, New York, NY, USA, ACM (2013) 309–318

11. Han, J., Yan, Q., Gao, D., Zhou, J., Deng, R.H.: Comparing Mobile Privacy
Protection through Cross-Platform Applications. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS), San Diego, CA (Feburary
2013)

12. Han, J., Kywe, S.M., Yan, Q., Bao, F., Deng, R., Gao, D., Li, Y., Zhou, J.: Launch-
ing Generic Attacks on iOS with Approved Third-Party Applications. In: Proceed-
ings of the 11th International Conference on Applied Cryptography and Network
Security (ACNS 2013). Volume 7954., Banff, Alberta, Canada, Springer Berlin
Heidelberg (June 2013) 272–289 Lecture Notes in Computer Science.

13. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: When Benign Apps
Become Evil. (2013)

14. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An Information-flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. In: Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation. OSDI’10, Berkeley, CA, USA, USENIX As-
sociation (2010) 1–6

15. Szydlowski, M., Egele, M., Kruegel, C., Vigna, G.: Challenges for Dynamic Analysis
of iOS Applications. In Camenisch, J., Kesdogan, D., eds.: Open Problems in
Network Security. Volume 7039 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2012) 65–77

16. Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Cryptographically verified
implementations for TLS. In: Proceedings of the 15th ACM conference on Com-
puter and communications security, ACM (2008) 459–468

17. Mitchell, J.C., Mitchell, M., Stern, U.: Automated Analysis of Cryptographic
Protocols Using Murphi, IEEE Computer Society Press (1997) 141–151

	iCryptoTracer: Dynamic Analysis on Misuse of Cryptography Functions in iOS Applications

