i~ .
E p— - / s ——
— < S == ..
=) 2
- A\ . DRSS
- D - 2
~ 3 v 7 = &) - SNZER -
: > P e N = e -
i / - = % o= — S o -
e : < g f S -
p - - - 0 N2 oCE S -
B - L = N) ot — =
0o (?4 ‘ e —
0 P BTN Vi, B0

EthPloit: From Fuzzing to Efficient Exploit
Generation against Smart Contracts
Qingzhao Zhang'?, Yizhuo Wang’, Juanru Li’, Siqi Ma®

'Shanghai Jiao Tong University, China
2University of Michigan, America
3Data 61, CSIRO, Australia

SANER’20, London ON. Canada, Febrary 21, 2020

Contents

Background

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

GEXAA

2 isse) £
6;”//4 (,~(\“$\ SHANGHALI JIAO TONG UNIVERSITY

Contents

45 Background

GEXAA

 Aieee L5
mmresS” SHANGHALI JIAO TONG UNIVERSITY

Overview of Ethereum

Ethereum is the second-largest blockchain system

= A programmable blockchain

= A platform for decentralized applications.

= A transaction-based state machine

= The heart is Ethereum Virtual Machine (EVM)

= Based on Turing-complete programming language (Solidity)

Overview of Ethereum

Ethereum is the second-largest blockchain system

= A programmable blockchain

= A platform for decentralized applications.

= A transaction-based state machine

= The heart is Ethereum Virtual Machine (EVM)

= Based on Turing-complete programming language (Solidity)

Smart Contract IS

Contract Code

External Owned Account

= Source code written in Solidity ah
:
S -

= Compiled by Solc to get bytecode

= Bytecode run on EVM N\

Contract Account

Contract Action .
E orage code

Shared
Wallets

* Created by External Owned Account

» Executed on incoming transactions
Crowdfundmg

Schemes

Transaction

ATNF=mml

— , ()
Xy

= From: Sender’s Address
= To: Receiver's Address
= Value: Amount of Currency

= Data: Various situations
= Empty (just transfer currency)
* |nit code of contract

= Called function with arguments

—_——

Call a function
— of contract

storage J

l Run the code

= Change the balance
E = Update the storage

-- State variable

Exploitation of Smart Contract

What is the exploitation

= From attacker to target contract

* A sequence of transactions

Categories of exploitation

According to the cause of damages:

= Balance Increment
= Self-destruction

= Code Injection

(Attacker |

Balance
[- |

B

=)

eSS Al

TXn

TXn-,

TX,

TX,

~—

mi

Exploitable Vulnerabilities

Unchecked Transfer Value

= Misuse of this.balance function withdraw() notOnPause public {

if (block.timestamp >= x.c (msg.sender
) + 10 minutes) {
uint _payout = (x.d(msg.sender).
mul (x.getInterest (msg.sender))
.div (10000)) .mul (

= Missing & misuse of check block.timestamp .sub (x.c (msg.

= Unlimited profit

Vulnerable Access Control

sender))) .div (1 days);
x.updateCheckpoint (msg.sender) ;

- before sensitive operation

(_payout > 0)
msg.sender.transfer (_payout);

Exposed Secret

= Newly identified vulnerability

= Previous tools cannot exploit

Exploitable Vulnerabilities

Unchecked Transfer Value
contract Game {

address questionSender;

= Misuse of this.balance string public question; | Secret checker
.. . bytes32 responseHash;
" IJDJHTHted.pFOfHI function Try(string _response) external

payable{

require (msg.sender == tx.origin);

if (responseHash| == keccak256 (_response|)
&& msg.value>1 ether) {
‘msg.sender.transfer (this.balance) ;|

Vulnerable Access Control

= Missing & misuse of check :

}

- before sensitive Operatlon function StartGame (string _question,string

_response) public payable ({
if (responseHash==0x0) {
| responseHash|= keccak256 (_response) ;

Exposed Secret

question = _question;
. . n . questionSender = msg.sender;
= Newly identified vulnerability N

Secret setter

= Previous tools cannot exploit

Exploitable Vulnerabilities

Unchecked Transfer Value

= Misuse of this.balance

= Unlimited profit

Vulnerable Access Control

= Missing & misuse of check

- before sensitive operation

Exposed Secret

= Newly identified vulnerability

= Previous tools cannot exploit

2
3

1 contract Game {

address questionSender;
strlng publlc questlon

Secret checker

Attackers mspect the secret from
the data of prevmus transactions

|msg sender transfer(thls balance) ;|

Attackers break the secret
checking to gain proflt

15
16
17

responseHas

) N~

question = _question;
questionSender = msg.sender;

Secret setter

Contents

4£» Motivation

GEXAA

 Aieee L5
mmresS” SHANGHALI JIAO TONG UNIVERSITY

Goal of the Work

ATNF=mml

Unchecked Transfer Value

Vulnerable Access Control

Exposed Secret

Vulnerabilities Exploited

Efficient Exploit }
Generation

{ Fuzzing =—p

Challenges of Exploit Generation

Challenge-1:

Unsolvable Constraint

< Situation in smart contract >

Condition restricting sensitive operations

- Involve complicated operation like hash

function Try (string _response) external

payable{

require (msg.sender

if (responseHash ==
&& msg.value>1

== tx.origin);

keccak256|(_response)

ether) {

Imsg.sender.transfer (this.balance) ;|

< Previous solution>

Previous tools (e.g., Teether, Mythril)
rely on SMT solver

e Cannot solve cryptographic constraint

* Ignore the runtime value

- not stored in contract state

Challenges of Exploit Generation

Challenge-2:
Blockchain Effects

< Situation in smart contract >

Blockchain effects of blockchain system
affect the execution of smart contracts

- E.g., blockchain properties

function withdraw() notOnPause public {
if (block.timestamp >= x.c(msg.sender) + 10 minutes) {
uint _payout = (x.d(msg.sender).mul(x.getInterest(
msg.sender)).div(10000)).mul (block.timestamp

sub(x.c(msg.sender))).div(1 days);
x.updateCheckpoint (msg.sender);
3
if (_payout > 0)
msg.sender . transfer (_payout);

< Previous solution>

Previous tools have difficulties on
manipulating blockchain effect:

* Lack of considering the syntax
of blockchain properties

e.g., invalid timestamp

* Ignore the possibility of call
reverting, thus lose coverage

e.g., Teether, ContractFuzzer

Our Solution s

Fuzzing EthPloit: a smart contract specific fuzzer

Feedback of runtime value

Record the runtime values of Indicated information:
arguments and variables - Execution history

= Create a blank seed set » e.g., the hash image

* Update the seed set » State of the contract

= Use for the next generation * i.e., the state variable

Manipulation of

) : By instrumenting the execution environment
blockchain execution

Contents

4 » EthPloit Fuzzer

GEXAA

 Aieee L5
mmresS” SHANGHALI JIAO TONG UNIVERSITY

Workflow of EthPloit
Taint Analyzer

ﬂ<— Solidity Compiler

Bytecode

Test Case Generator Instrumented EVM

~

_Taint Relation Graph [Block Property [Critical Instruction
> | Function Selection | Configuration Coverage
- ’ p g Trace :
| Argument Generation | Revert-call Feedback
Configuration Construction

Coverage Guider

~

Feedback Handler

[

[

[

[

[

[

[

| r
: | Property Generation]e
|

[

[

[

I

[

[

[

[

6

[Function Distribution] .
i Val I
==n)!

Fuzzing Iteration

1
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
I
|
I
|

' Knowledge of dependencies of modifying
| contract state improves fuzzing efficiency

|
:
|
require (balance[msg.sender]|
>=value);
|
balance[msg.sender]—=va1ue;:
|
|
|
|

X msg.sender.transfer(value);

'EthPImt applies static taint analysis to discover

e oo o o e e e e e e e e e e e e e em e e e e e e e e

i i

: dependencies of modifying contract states:

= Generate control flow graph

—[require(balance[msg.sender]>=value

______________________________ | 1

r ' . —
| Extract variable-level dependencies ba'ance[msg-sinderl value
|

| m Variable_Data Dependency msg.sender.tranfer(value)

|
bl Exit

: = Variable-Control Dependency

|
|
: = Label taint sources and sinks
|
|

ATNF=mml

; Knowledge of dependencies of modifying | _
| I Variable-Data
contract state improves fuzzing efficiency :

| ————————————————————————————— 1 ‘msg.sender taint balance |
| EthPloit applies static taint analysis to discover value taint balance |

: dependencies of modifying contract states:

‘msg.sender taint transfer |

value taint transfer |

|
|
|
|
' = Generate control flow graph |
: = Label taint sources and sinks :
| |
|

_. _P_e r_fo_r£n _tf lil t_p_rg;la_g Eitl_Oil _____________ I Variable-Control

‘msg.sender crtl transfer)

value ctrl transfer

-
| Extract variable-level dependencies
|

: = Variable-Data Dependency

: = Variable-Control Dependency

balance ctrl transfer)

ATNF=mml

@ Test Case Generator

Optimize the test case by analyzing how inputs affect the execution of exploits
@nt Relat@ Extend in-function dependencies to
Graph dependencies among functions

[Function] B
Selection = Select function from candidates based on probability distribution

= Add suitable functions into a set of candidates

—

" Arguments * From pseudo-random generator

. Generation

* From dynamic seed set

~——

r

Blockchain Properties
Generation

] Based on Instrumented EVM Environment

Q Instrumented EVM Environment

ATl
* Based on remix-debugger Configure accounts
= Deploy contract { - For each test case
» Execute transaction [Configure block properties
* Extract full execution trace - For each execution of transaction
Compared to private Ethereum chain [Force external calls to revert
= More light-weight - For each external call
" More flexible for configure [- Revert the 2" execution of call

Trace Analvzers

g y ArF=mdl |
Coverage Guider Exploit Detector
— Measure the progress of exploit- Balance Increment oracle

J oriented fuzzin
5 = [f attackers’ balance is increased

_ Construct feedback as rewards _
Self-Destruction oracle

Critical instruction coverage = If the opcode SELFDESTRUCTION is found

Feedback construction Code Injection oracle
= Seed feedback

= Function distribution feedback

N,
P(f) = co +N—t(01 — Cp)

= [f opcodes CALLCODE, DELEGATECALL are found

= [f destination is controlled by attackers

orkflow
9 Feedback Handler

ATNF=mml
Dynamic Seed Strategy

Aim to guide the test case generator to produce proper function arguments

iFor the whole process of fuzzing :i For each test case

Make use of connections among transactions

= Select local seeds after each execution of

t tion:
« Select global seeds which have a ransattion

I . . = Previous arguments
lifetime during fuzzing one contract

= State variables

= All arguments of interesting cases * 1/0 of complicated calls

causing coverage increment = Constant values

Workflow of EthPloit
Taint Analyzer

ﬂ<— Solidity Compiler

Bytecode

Test Case Generator Instrumented EVM

~

_Taint Relation Graph [Block Property [Critical Instruction
> | Function Selection | Configuration Coverage
- ’ p g Trace :
| Argument Generation | Revert-call Feedback
Configuration Construction

Coverage Guider

~

Feedback Handler

[

[

[

[

[

[

[

| r
: | Property Generation]e
|

[

[

[

I

[

[

[

[

6

[Function Distribution] .
i Val I
==n)!

Fuzzing Iteration

1
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
I
|
I
|

Contents

45» Evaluation

GEXAA

 Aieee L5
mmresS” SHANGHALI JIAO TONG UNIVERSITY

Environment IS

Totally 45,308 contracts

Environment Two 3.60GHz Xeon CPUs with 128GB RAM
» Maximum test cases as 1,000
Configuration » Maximum length as 3 for each case

Teether[1] and MAIAN[2] with a timeout of 5 minutes

[1] Krupp, Johannes, and Christian Rossow. “teether: Gnawing at ethereum to automatically exploit smart contracts.” 27th
{USENIX} Security Symposium ({(USENIX} Security 18). 2018.

[2] Nikoli¢, Ivica, et al. “Finding the greedy, prodigal, and suicidal contracts at scale.” Proceedings of the 34th Annual
Computer Security Applications Conference. 2018.

| Ethlet

:- Totally generated 644 exploits
.= No false positive, verified using real-world EVM
* 600 Balance Increment, 59 Self-destruction, 4 Code Injection

: ' Teether / MAIAN

I
'* unable to analyze 5,123 contracts and 102 contracts

|
- Teether generated 14 false positive

\= MAIAN cannot exploit lots of vulnerable contracts

7
) .
-

Evaluation of Contract Exploit

Summary of exploits generated based on triggered vulnerabilities

Exposed Secret Unchecked Transfer Value Bad Access

Tools Cryptographic Checks Others | Total | Unlimited Profit Misused this.balance = Others | Total Control Others | Total
ETHPLOIT 104 8 112 144 181 26 351 142 39 644
teether 0 0 0 30 25 6 61 13 3 77
MAIAN 0 4 4 31 143 16 190 99 3 296
e = e e o e = e = = e e = e =

: EthPloit

|
|
I = For Exposed Secret, 104 out of 112 exploits have cryptographic checks in the execution path :
|
I * For Unchecked Transfer Value, 144 out of 351 exploits are caused by Unlimited Profit |

' Comparison

|
|
| EthPloit has huge advantage over teether and MAIAN ;
|
|

: - Especially in exploiting Exposed Secret and Unchecked Transfer Value

Evaluation of Contract Exploit

Summary of exploits generated based on two typical vulnerabilities

Cryptographic Checks Unlimited Profit

EthPloit 104 144
Teether 0 30
MAIAN 0 31

: Instrumented EVM Environment :

: Dynamlc Seed Strategy:

L Fetch secret value - simulate block properties

|
|
|
I | .
1= Solve hash checks : : = Exploit lottery games

________________ : = block properties as random seed

SHANGHAI JIAO TONG UNIVERSITY

Impact of Vulnerabilities Identified

Information of typical contracts exploited by EthPloit

Contract Information Exploit results Number of Test Cases

Contract Address #Tx Highest Balance Vulnerability Teether/MAIAN | Normal No EVM No Seeds No Taint
TestR Oxaf53... 6 0.5 ETH, $269.2 Exposed Secret X [/ 13.0 18.1 - 8.9
BLITZ_GAME 0x35b5... | 6.0 ETH, $572.6 Exposed Secret X [% 49.6 50.0 - 169.0
Who_Wants... Oxfc62... 10 4.0 ETH, $546.3 Exposed Secret X [% 46.2 28.0 - 61.5
Game 0xe37b... 6 3.0 ETH, $445.9 Exposed Secret X [% 50.2 37.8 - 65.5
GPUMining 0xa965... 346 1.2 ETH, $712.3 | Unchecked Transfer Value X / X 188.1 660.6 319.7 332.9
HRKD 0x0a70... 307 50.1 ETH, $11k | Unchecked Transfer Value X /% 48.4 - 29.2 20.1
Slotthereum 0xb43b... 76 0.4 ETH, $92.4 | Unchecked Transfer Value X [% 529 87.4 214.6 572
Divs4D 0x3983... 161 4.1 ETH, $905.3 | Unchecked Transfer Value X [% 10.7 - 18.9 29.1
DailyRoi 0x77e4... 4,488 397.1 ETH, $87k | Unchecked Transfer Value X [% 11.6 - 10.3 10.7
Dividend Oxe3ac... 47 140.5 ETH, $66k | Unchecked Transfer Value X /v 134.7 47.8 - 333.3
HOTTO O0x612f... 132 1.1 ETH, $320.1 Bad Access Control X /v 18.2 23.8 - 15.3
Crypto...Network 0x781f... 52K 1.3 ETH, $541.8 Bad Access Control X [/ 28.8 40.0 214 89.7

Exposed Secret exploited in total: 32 contract, lost 37.3 ETH, about $6,485

Unchecked Transfer Value & Vulnerable Access Control

affect lots of widely used contracts, e.g., DailyRoi:
4,888 transactions, maximum balance of 397.1 ETH ($87K)

Evaluation of Core Techniques

Benchmarks : newly discovered 554 exploitable contracts

Four different configuration of EthPloit:
- 4 Without EVM instrumentation

- 4 Without dynamic seed strategy

- 4 Without taint constraints

- Baseline: All techniques are enabled

Benchmark is tested for 10 times under each configuration, respectively

Evaluation of Core Techniques

Number of generated exploits under various configuration

400

3501 337

N W
w o
o o
1 1

Count of exploits
N
o
o

=
o w
o o
1 1

U
o
1

0..

Configuration
Bl Baseline
B Without EVM instrumentation
BN Without dynamic seed strategy
B Without taint constraints

142142141142

Unchecked Transfer Exposed Secret Bad Access Others

Value

Without dynamic seed strategy

Without EVM instrumentation

Control

EthPloit miss moOsSt Exposed Secret

EthPloit miss 69 Unchecked Transfer Value

Evaluation of Core Techniques

Count of exploits with regards to count of test cases

600 A

Count of generated exploits

Use the number of test cases to represent fuzzing efficiency

- The overall fuzzing efficiency is damaged when taint analysis is removed

- With taint constraints, over 90% exploits can be found in 100 test cases

500 A

400 -

300 A

—-——-—.————_———-———_-
-
==
oS S W —
= —

- Baseline
- = \Without taint constraints

0 50

100 150 200 250 300
Count of test cases

Contents

45 Conclusion

GEXAA

 Aieee L5
mmresS” SHANGHALI JIAO TONG UNIVERSITY

Conclusion

Design EthPloit

4% Automatically generate exploits of contracts

4 Deploy light-weight approaches to solve:
= Unsolvable Constraints

» Blockchain Effects

4EP Fuzz 45,308 contracts in real world

4% Introduce a new vulnerability: Exposed Secret

In memory of medical staff who bravely fight COVID

During the new coronavirus infection in 2020:
- Li Wenliang and @ other doctors

- More than health workers

Pay the highest respect to all the medical staff!

7

Thank you & Question ?

»

&

NIVERSITY

P

SHANGHALI JIAO TONG

