
EthPloit: From Fuzzing to Efficient Exploit
Generation against Smart Contracts
Qingzhao Zhang1,2, Yizhuo Wang1, Juanru Li1, Siqi Ma3

1Shanghai Jiao Tong University, China
2University of Michigan, America

3Data 61, CSIRO, Australia
SANER’20, London ON. Canada, Febrary 21, 2020

Contents

1 Background

2

3

4

5

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

Contents

1 Background

2

3

4

5

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

▪ A programmable blockchain

▪ A platform for decentralized applications.

Overview of Ethereum

▪ A transaction-based state machine

▪ The heart is Ethereum Virtual Machine (EVM)

▪ Based on Turing-complete programming language (Solidity)

In General

In Detail

8 Eth

6 Eth

5 Eth

Ethereum is the second-largest blockchain system

▪ A programmable blockchain

▪ A platform for decentralized applications.

Overview of Ethereum

▪ A transaction-based state machine

▪ The heart is Ethereum Virtual Machine (EVM)

▪ Based on Turing-complete programming language (Solidity)

In General

In Detail

8 Eth

6 Eth

5 Eth

Blockchain level

EVM level

Contract level

Ethereum is the second-largest blockchain system

▪ Source code written in Solidity
▪ Compiled by Solc to get bytecode
▪ Bytecode run on EVM

Smart Contract

Contract Code

▪ Created by External Owned Account

▪ Executed on incoming transactions

Contract Action

External Owned Account

Address

storage code

Balance

Contract Account

Address Balance

Crowdfunding
Schemes

Shared
Wallets Games …

▪ From: Sender’s Address

▪ To: Receiver’s Address

▪ Value: Amount of Currency

▪ Data: Various situations
▪ Empty (just transfer currency)
▪ Init code of contract

▪ Called function with arguments

Transaction

Basic Fields Balance

Balance

storage

Result

EVM

Call a function
of contract

▪ Change the balance

▪ Update the storage
-- State variable

Run the code

Simulate a scene

According to the cause of damages:

▪ Balance Increment

▪ Self-destruction

▪ Code Injection

Exploitation of Smart Contract

Balance

Balance

storage

What is the exploitation

Categories of exploitation

▪ From attacker to target contract

▪ A sequence of transactions

Attacker

EVM

TXn-1

TXn-2

…

TX1

TX0

Exploit

▪ Misuse of this.balance
▪ Unlimited profit

Exploitable Vulnerabilities
Unchecked Transfer Value

Vulnerable Access Control

Exposed Secret

▪ Newly identified vulnerability

▪ Previous tools cannot exploit

▪ Missing & misuse of check
- before sensitive operation

▪ Misuse of this.balance
▪ Unlimited profit

Exploitable Vulnerabilities
Unchecked Transfer Value

Vulnerable Access Control

Exposed Secret

▪ Newly identified vulnerability

▪ Previous tools cannot exploit

▪ Missing & misuse of check
- before sensitive operation

Secret checker

Secret setter

▪ Misuse of this.balance
▪ Unlimited profit

Exploitable Vulnerabilities
Unchecked Transfer Value

Vulnerable Access Control

Exposed Secret

▪ Newly identified vulnerability

▪ Previous tools cannot exploit

▪ Missing & misuse of check
- before sensitive operation

Secret checker

Secret setter

Attackers inspect the secret from
the data of previous transactions

Attackers break the secret
checking to gain profit

Contents

1 Background

2

3

4

5

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

Goal of the Work

Unchecked Transfer Value

Vulnerable Access Control

Exposed Secret

Vulnerabilities Detected

Vulnerabilities Exploited

Fuzzing Efficient Exploit
Generation

Challenges of Exploit Generation

Challenge-1:

Unsolvable Constraint

Condition restricting sensitive operations

- Involve complicated operation like hash
Previous tools (e.g., Teether, Mythril)

rely on SMT solver

• Cannot solve cryptographic constraint

• Ignore the runtime value

- not stored in contract state

< Situation in smart contract > < Previous solution>

Challenges of Exploit Generation

Challenge-2:

Blockchain Effects

Blockchain effects of blockchain system
affect the execution of smart contracts

- E.g., blockchain properties

Previous tools have difficulties on
manipulating blockchain effect:
• Lack of considering the syntax
of blockchain properties
e.g., invalid timestamp

• Ignore the possibility of call
reverting, thus lose coverage
e.g., Teether, ContractFuzzer

< Situation in smart contract > < Previous solution>

Our Solution

Feedback of runtime value

Manipulation of
blockchain execution

Record the runtime values of
arguments and variables
▪ Create a blank seed set
▪ Update the seed set
▪ Use for the next generation

By instrumenting the execution environment

Indicated information:

▪ Execution history
▪ e.g., the hash image

▪ State of the contract
▪ i.e., the state variable

Fuzzing EthPloit: a smart contract specific fuzzer

Contents

1 Background

2

3

4

5

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

Workflow of EthPloit

1

2

5

3

4

Taint Analyzer1
Workflow

Extract variable-level dependencies
▪ Variable-Data Dependency
▪ Variable-Control Dependency

EthPloit applies static taint analysis to discover
dependencies of modifying contract states:
▪ Generate control flow graph
▪ Label taint sources and sinks
▪ Perform taint propagation

Knowledge of dependencies of modifying
contract state improves fuzzing efficiency

Taint Analyzer1
Workflow

Extract variable-level dependencies
▪ Variable-Data Dependency
▪ Variable-Control Dependency

EthPloit applies static taint analysis to discover
dependencies of modifying contract states:
▪ Generate control flow graph
▪ Label taint sources and sinks
▪ Perform taint propagation

Knowledge of dependencies of modifying
contract state improves fuzzing efficiency

Test Case Generator2
Workflow

Function
Selection

Arguments
Generation

Blockchain Properties
Generation

Taint Relation
Graph

Optimize the test case by analyzing how inputs affect the execution of exploits

Extend in-function dependencies to
dependencies among functions

▪ Add suitable functions into a set of candidates
▪ Select function from candidates based on probability distribution

▪ From pseudo-random generator
▪ From dynamic seed set

Based on Instrumented EVM Environment

Instrumented EVM Environment3

EthPloit environment

▪ Based on remix-debugger
▪ Deploy contract
▪ Execute transaction
▪ Extract full execution trace

Compared to private Ethereum chain
▪ More light-weight
▪ More flexible for configure

Three instrumentations

Configure accounts

- For each test case

Configure block properties

- For each execution of transaction

Force external calls to revert

- For each external call

- Revert the 2nd execution of call

Workflow

Trace Analyzers
Coverage Guider

4

Balance Increment oracle

▪ If attackers’ balance is increased

Self-Destruction oracle

▪ If the opcode SELFDESTRUCTION is found

Code Injection oracle
▪ If opcodes CALLCODE, DELEGATECALL are found

▪ If destination is controlled by attackers

Exploit Detector

Measure the progress of exploit-
oriented fuzzing
Construct feedback as rewards

𝑷 𝒇 = 𝒄𝟎 +
𝑵𝒄
𝑵𝒕

𝒄𝟏 − 𝒄𝟎

Workflow

Critical instruction coverage
Feedback construction
▪ Seed feedback
▪ Function distribution feedback

Feedback Handler
Dynamic Seed Strategy

5
Workflow

Aim to guide the test case generator to produce proper function arguments

For the whole process of fuzzing
▪ Perform more mutation based on
interesting cases

▪ Select global seeds which have a
lifetime during fuzzing one contract

▪ All arguments of interesting cases
causing coverage increment

For each test case
▪ Make use of connections among transactions
▪ Select local seeds after each execution of
transaction:

▪ Previous arguments
▪ State variables
▪ I/O of complicated calls
▪ Constant values

Workflow of EthPloit

1

2

5

3

4

Contents

1 Background

2

3

4

5

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

Environment

Dataset Totally 45,308 contracts

Teether[1] and MAIAN[2] with a timeout of 5 minutesComparison

Environment Two 3.60GHz Xeon CPUs with 128GB RAM

Fuzzing
Configuration

▪ Maximum test cases as 1,000
▪ Maximum length as 3 for each case

[1] Krupp, Johannes, and Christian Rossow. "teether: Gnawing at ethereum to automatically exploit smart contracts." 27th
{USENIX} Security Symposium ({USENIX} Security 18). 2018.

[2] Nikolić, Ivica, et al. "Finding the greedy, prodigal, and suicidal contracts at scale." Proceedings of the 34th Annual
Computer Security Applications Conference. 2018.

Evaluation of Contract Exploit

EthPloit
▪ Totally generated 644 exploits
▪ No false positive, verified using real-world EVM
▪ 600 Balance Increment, 59 Self-destruction, 4 Code Injection

Teether / MAIAN

▪ unable to analyze 5,123 contracts and 102 contracts

▪ Teether generated 14 false positive

▪ MAIAN cannot exploit lots of vulnerable contracts

Evaluation of Contract Exploit

Summary of exploits generated based on triggered vulnerabilities

EthPloit
▪ For Exposed Secret, 104 out of 112 exploits have cryptographic checks in the execution path
▪ For Unchecked Transfer Value, 144 out of 351 exploits are caused by Unlimited Profit

Comparison
▪ EthPloit has huge advantage over teether and MAIAN

- Especially in exploiting Exposed Secret and Unchecked Transfer Value

Evaluation of Contract Exploit

Tools Cryptographic Checks Unlimited Profit

EthPloit 104 144

Teether 0 30

MAIAN 0 31

Dynamic Seed Strategy:

▪ Fetch secret value
▪ Solve hash checks

Instrumented EVM Environment :

▪ simulate block properties
▪ Exploit lottery games

▪ block properties as random seed

Summary of exploits generated based on two typical vulnerabilities

Impact of Vulnerabilities Identified

Exposed Secret exploited in total: 32 contract, lost 37.3 ETH, about $6,485

Unchecked Transfer Value & Vulnerable Access Control
affect lots of widely used contracts, e.g., DailyRoi:

4,888 transactions, maximum balance of 397.1 ETH ($87k)

Information of typical contracts exploited by EthPloit

Evaluation of Core Techniques

Benchmarks : newly discovered 554 exploitable contracts

Four different configuration of EthPloit:
- Without EVM instrumentation

- Without dynamic seed strategy

- Without taint constraints

- Baseline: All techniques are enabled

Benchmark is tested for 10 times under each configuration, respectively

1

2

3

Evaluation of Core Techniques
Number of generated exploits under various configuration

Without dynamic seed strategy EthPloit miss most Exposed Secret
Without EVM instrumentation EthPloit miss 69 Unchecked Transfer Value

Evaluation of Core Techniques

Use the number of test cases to represent fuzzing efficiency
- The overall fuzzing efficiency is damaged when taint analysis is removed

- With taint constraints, over 90% exploits can be found in 100 test cases

Count of exploits with regards to count of test cases

Contents

1 Background

2

3

4

5

Motivation

EthPloit Fuzzer

Evaluation

Conclusion

Conclusion

Design EthPloit

Automatically generate exploits of contracts

Deploy light-weight approaches to solve:

▪ Unsolvable Constraints

▪ Blockchain Effects

Fuzz 45,308 contracts in real world

Introduce a new vulnerability: Exposed Secret

1

2

3

4

In memory of medical staff who bravely fight COVID

During the new coronavirus infection in 2020:

- Li Wenliang and 8 other doctors died of illness

- More than 3,000 health workers infected

Pay the highest respect to all the medical staff !

Thank you & Question ?

